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CHAPTER 1 
 

INTRODUCTION 
 
1.1 General Introduction. 

Proliferating tumor cells have unique metabolic requirements characterized by enhanced 

cell-autonomous nutrient uptake and reorganization of metabolic pathways to support the 

biosynthesis of macromolecules needed for cell growth and division. This includes the folate-

dependent de novo synthesis of purines and thymidylate for the synthesis of DNA and RNA.  

Early observations made by Farber and colleagues established the importance of folate 

metabolism in cancer progression. Specifically, folic acid supplementation was found to 

stimulate leukemic cell growth and enhance disease progression among children with acute 

lymphoblastic leukemia (ALL) (Farber et al., 1947). Therefore, it was hypothesized that folic 

acid antagonists may inhibit or arrest the proliferation of cancer cells (Farber and Diamond, 

1948). In collaboration with SubbaRow and colleagues of Lederle Laboratories, a series of folic 

acid analogs including aminopterin (AMT) and methotrexate (MTX) were synthesized. This 

collaboration signified one of the first examples of rational drug design in cancer drug discovery. 

When administered to children with ALL in 1948, these antifolates became the first drugs to 

induce remission in this malignancy (Farber, 1949; Farber and Diamond, 1948). Remarkably, 

MTX continues to achieve widespread clinical use as an essential component of multidrug 

regimens for treating ALL (Pui and Evans, 2006), lymphomas, and solid tumors worldwide 

(Jolivet et al., 1983; Monahan, 2001). Thus, targeting folate metabolism and nucleic acid 

synthesis has the potential to affect cancers arising from many different tissues. Unfortunately, 

the efficacy of MTX clinically is limited by a lack of tumor selectivity and the presence of de 
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novo and acquired resistance (Matherly et al., 2007). These limitations have led to decades of 

drug discovery efforts aimed at characterizing more effective antifolates.  

The novel antifolate, pemetrexed (PMX) is one of the antimetabolites that were identified 

through these drug discovery efforts (Taylor et al., 1992). The FDA approval of PMX for the 

treatment of malignant pleural mesothelioma in 2004 (Hazarika et al., 2004) and non-small cell 

lung cancer (NSCLC) in 2008 (Cohen et al., 2009) and the concomitant discovery of the proton-

coupled folate transporter (PCFT), the preferred cellular uptake route of PMX, by Goldman and 

colleagues in 2006 (Qiu et al., 2006) has caused a revival of interest in antifolates for cancer 

therapy (Goldman et al., 2010). This success has shaped a new therapeutic approach to rational 

folate analog design based on targeting delivery into the cancer cell by exploiting the tumor-

specific expression and/or function of folate transporters. This strategy is expected to increase 

the tumor selectivity of these antimetabolites and enhance their therapeutic window. 

This chapter will review the basic biology of PCFT as it relates to the therapeutic 

application of PCFT in tumor targeting.  It will provide an overview of PCFT function, 

expression, and transcriptional regulation, as well as discuss structurally and functionally 

important amino acids and domains. The relationship of PCFT to other folate transporters and 

the consequences of PCFT mutations in human disease will be described. Finally, this chapter 

will begin to establish the feasibility of a treatment strategy that targets solid tumors based on 

PCFT-specific uptake of novel folate based analogs.  

1.2 Folate Metabolism. 

Folates designate the family of B9 vitamins that are essential cofactors necessary for 

various one-carbon transfer reactions in intermediary metabolism. Important among these 

reactions are critical steps in the de novo synthesis of thymidylate and purine nucleotide 



www.manaraa.com

 

 

3

biosynthesis, the regeneration of methionine from homocysteine, the interconversion of serine 

and glycine, and the catabolism of histidine and formic acid (Matherly and Goldman, 2003; 

Sirotnak and Tolner, 1999; Stokstad, 1990). The folate molecule consists of three structural 

components: a pteridine ring system, a p-aminobenzoic acid (PABA) and an L-glutamate moiety 

(Figure 1.1) (Assaraf, 2007; Zhao et al., 2009a). Mammalian cells are devoid of the metabolic 

enzymes necessary for folate biosynthesis. Thus, all folate requirements must be acquired 

through the diet (Matherly and Goldman, 2003; Sirotnak and Tolner, 1999). Within the 

mammalian cell, folates are converted to various one-carbon-substituted tetrahydrofolate (THF) 

cofactors with a one-carbon moiety at the N5 and/or N10 position at the oxidation level of 

methanol (5-methylTHF), formaldehyde (5,10-methyleneTHF) or formate (10-formylTHF or 

5,10-methenylTHF). Additionally, folates undergo polyglutamylation by folylpoly-γ-glutamate 

synthase (FPGS) in which 2 to 8 linked glutamyl residues are added to the γ-carboxyl on PABA 

of the THF cofactor. Polyglutamates of THF cofactors are polyanions which are impermeable to 

the plasma membrane and hence are retained in cells, thus ensuring high levels of intracellular 

reduced folates (Figure 1.1) (Stokstad, 1990).  

Carbon 3 of serine (derived from glycolytic intermediates) is the primary source of one-

carbon units for cytoplasmic one-carbon metabolism (Davis et al., 2004), mainly through its 

conversion to formate in the mitochondria (Anguera et al., 2006; Barlowe and Appling, 1988; 

Barlowe and Appling, 1990; Garcia-Martinez and Appling, 1993; Gregory et al., 2000; Herbig et 

al., 2002; Kastanos et al., 1997; MacFarlane et al., 2008; Pasternack et al., 1994; Pasternack et 

al., 1996; Patel et al., 2003; Quinlivan et al., 2005; Tibbetts and Appling, 2010). The cytoplasmic 

and mitochondrial compartments are metabolically connected by transport of serine, glycine and 

formate across mitochondrial membranes. Once transported into the mitochondria, the one- 
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Figure 1.1 Structure of 5-methyl tetrahydrofolate and classical antifolates. 5-methyl-
tetrahydrofolate (THF) is the major dietary form and the dominant folate found in blood. The 
folate molecule consists of a 6-methylpteridine moiety with A and B rings linked at carbon 6 by 
a methylene bridge to p-aminobenzoylglutamic acid. The N5 and/or N10 position can associate 
with a methyl (Panel A), formyl, methylene or methenyl one carbon moiety, which serve as one-
carbon donors in biosynthetic reactions. THF undergoes polyglutamylation by folylpoly-γ-
glutamate synthase (FPGS) in which 2 to 8 linked glutamyl residues are added to the γ-carboxyl 
on PABA of the THF cofactor. Panel B, Antifolates are structural analogs of natural folates that 
inhibit folate-dependent enzymes. Antifolates inhibiting: dihydrofolate reductase (DHFR) are 
aminopterin (AMT), methotrexate (MTX), and praletrexate (PDX); thymidylate synthase (TS) 
are raltitrexed (RTX) and pemetrexed (PMX); β-glycinamide ribonucleotide formyltransferase 
(GARFTase) is lometrexol (LMX). PMX inhibition of 5-amino-4-imidazolecarboxamide 
ribonucleotide formyltransferase (AICARFTase) and MTX polyglutamate inhibition of TS and 
AICARFTase is not illustrated. 



www.manaraa.com

 

 

5

 
carbon unit from serine is transferred to THF in a reaction catalyzed by mitochondrial serine 

hydroxymethyltransferase (mSHMT), which generates 5, 10-methyleneTHF and glycine 

(reaction 1m) in Figure 1.2 (Tibbetts and Appling, 2010). In the mitochondria, 5,10-

methyleneTHF is converted into 10-formylTHF by the bifunctional MTHFD2 in embryonic 

tissue (Mejia and MacKenzie, 1985) or MTHFD2L in adult tissues (Bolusani et al., 2011). 

Bifunctional MTHFD2 has both 5,10-methyleneTHF dehydrogenase (reaction 2m) and 5,10-

methenylTHF cyclohydrolase (reaction 3m) activities. 10-formylTHF can then be converted by 

the monofunctional MTHFD1L 10-formylTHF synthetase into formate and reduced THF 

(reaction 4m) (Prasannan et al., 2003). Once exported into the cytoplasm, formate reacts with 

unsubstituted THF, facilitated by the 10-formylTHF synthetase activity of the cytoplasmic 

trifunctional enzyme C1-tetrahydrofolate synthase (referred to as MTHFD1) to produce 10-

formylTHF (reaction 4) (Hum et al., 1988; Paukert et al., 1977; Schirch, 1978; Smith et al., 

1980; Thigpen et al., 1990).  The formyl group of 10-formylTHF can be used in de novo purine 

nucleotide synthesis where it is donated to β-glycinamide ribonucleotide (GAR) and then 5-

amino-4-imidazolecarboxamide ribonucleotide (AICAR), which is catalyzed by GAR 

formyltransferase (GARFTase; reaction 5) and AICAR formyltransferase (AICARFTase; 

reaction 6), respectively.  This leads to a net two carbon transfer from 10-formylTHF to C-2 and 

C-8 of the purine ring, regenerating unsubstituted THF (Hartman and Buchanan, 1959b; Smith et 

al., 1981; Smith et al., 1980).  The 5,10-methenylTHF cyclohydrolase (reaction 3) and 5,10-

methyleneTHF dehydrogenase (reaction 2) activities of the cytosolic trifunctional MTHFD1 can 

also convert 10-formylTHF to 5,10-methenylTHF and subsequently 5,10-methyleneTHF (Hum 

et al., 1988; Paukert et al., 1977; Schirch, 1978; Smith et al., 1980; Thigpen et al., 1990), which 

can donate the one-carbon unit in the irreversible conversion of deoxyuridine monophosphate 
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(dUMP) to thymidylate (dTMP, a precursor to DNA), catalysed by thymidylate synthase (TS) 

(reaction 7 in the cytoplasm and 7n in the nucleus) (Friedkin and Roberts, 1956; Phear and 

Greenberg, 1957).  The resulting dihydrofolate (DHF) (Humphreys and Greenberg, 1958; 

McDougall and Blakley, 1960) is reduced by cytoplasmic DHFR to unsubstituted THF (reaction 

8).  Alternatively, 5,10-methyleneTHF can be reduced in an irreversible reaction by 5,10-

methyleneTHF reductase (MTHFR) to generate 5-methylTHF for entry into the methyl cycle 

(reaction 9). 5-methylTHF can donate a one carbon unit in the B12-dependent regeneration of 

methionine from homocysteine, regenerating the THF, catalyzed by methionine synthase 

(reaction 10) (Hatch et al., 1961). Methionine is a precursor for the synthesis of S-

adenosylmethionine (AdoMet or SAM), a cofactor and methyl group donor for numerous 

methylation reactions, including the methylation of cytosine bases in DNA, histones, RNA, 

neurotransmitters, and other small molecules, phospholipids, and other proteins (Figure 1.2) (Lu, 

2000).  

1.3 Membrane Transport of Folates.   

Due to the highly hydrophilic nature of folates and antifolates, three genetically distinct 

and functionally diverse transport systems are in place to facilitate their uptake into the cells of 

peripheral tissues.   

1.3.1 Reduced Folate Carrier.  

The reduced folate carrier (RFC; SLC19A1), a member of the Major Facilitator 

Superfamily of solute carriers, is a secondary active anionic exchanger and the major transport 

system for reduced folates (Kt ~ 2-4 µM) in mammalian cells and tissues at physiologic pH 

(Figure 1.2) (Goldman et al., 1968; Sirotnak et al., 1968). RFC has a very low affinity for folic 

acid and as the pH is decreased, the activity for reduced folates is diminished so that there is little 
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Figure 1.2 Folate transporters, folate metabolic pathways and intracellular enzyme targets 
of antifolates. Folate and antifolate transport across biological membranes is mediated by the 
reduced folate carrier (RFC), the proton-coupled folate transporter (PCFT) and the folate 
receptor (FR). Reactions 1-4 are in both the cytoplasmic and mitochondrial (m) compartments. 
Reactions 1 and 9 are also present in the nucleus (n). The numbered reactions are catalyzed by 
the following enzymes: 1, 1n and 1m, serine hydroxymethyltransferase (SHMT). In the 
mitochondria, reactions 2m and 3m are catalyzed by bifunctional MTHFD2 or MTHFD2L and 
4m is catalyzed by monofunctional MTHFD1L. In the cytoplasm, reactions 4, 3 and 2: 10-
formylTHF synthetase, 5,10-methenylTHF cyclohydrolase and 5,10-methyleneTHF 
dehydrogenase, respectively, are catalyzed by trifunctional C1-THF synthase in the cytoplasm 
(MTHFD1); 5, β-glycinamide ribonucleotide formyltransferase (GARFTase); 6, 5-amino-4-
imidazolecarboxamide ribonucleotide formyltransferase (AICARFTase); 7 and 7n, thymidylate 
synthase (TS); 8, dihydrofolate reductase (DHFR); 9, 5,10-methyleneTHF reductase (MTHFR); 
10, methionine synthase. Aminopterin (AMT), methotrexate (MTX), praletrexate (PDX), 
raltitrexed (RTX), lometrexol (LMX), pemetrexed (PMX) (Figure 1.1), ONX-0801 (ONX), 
compound 3, compound 16 and compound 17 (Figure 3.1).   
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activity below pH 6.5. The human RFC gene is located on chromosome 21q22.3, and the gene 

structure appears to be conserved across species, with as many as six non-coding regions and 

alternative promoters (A1, A2, A, B, C, D and E) spanning 35 kb upstream from the major AUG 

translational start in coding exon 1, and five major coding exons with conserved intron-exon 

boundaries. This gives 15 distinct 5’untranslated regions fused to a common splice acceptor at 

position -49 and the same 1,776 bp coding sequence, which encodes a protein consisting of 591 

amino acids (Flatley et al., 2004; Matherly et al., 2007; Payton et al., 2007; Whetstine et al., 

2002a). Promoter activity has been confirmed for the 5’ regions proximal to the A1/A2, A, B, C 

and D non-coding regions. Regulation of RFC gene expression is by both ubiquitous (e.g. Sp, 

USF) and tissue-specific (e.g., Ap2, C/EBp, Ikaros, GATA) transcription factors that, when 

combined, transactivate or repress transcription in response to tissue-specific stimuli.  

Additionally, promoter methylation, general architecture and chromatin structure have all been 

implicated in transcriptional regulation of RFC (Liu et al., 2004; Payton et al., 2005a; Payton et 

al., 2005b; Whetstine et al., 2002b).  

Hydropathy plot analysis of the RFC amino acid sequence predicted a topological model 

of 12 transmembrane domains (TMDs) and both amino- and carboxyl termini oriented to the 

cytosol. This was confirmed by hemagglutin epitope insertion, scanning N-glycosylation 

mutagenesis, and scanning cysteine accessibility methods (Cao and Matherly, 2004; Ferguson 

and Flintoff, 1999; Liu and Matherly, 2002). RFC is N-glycosylated at an N-glycosylation 

consensus site in the first intracellular loop (IL1) between TMD1 and TMD2. A large loop 

domain connecting TMD6 and TMD7 is needed to provide appropriate spacing between TMD1-

TMD6 and TMD7-TMD12 segments for optimal transport. Amino acids localized in TMD4, 

TMD5, TMD7, TMD8, TMD10 and TMD11 were implicated in forming the putative substrate-
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binding pocket (Hou et al., 2005; Hou et al., 2006). This structure is consistent with crystal 

structures for the bacterial Major Facilitator Superfamily proteins, lactose permease (LacY) and 

glycerol-3-phosphate transporter (GlpT) (Abramson et al., 2003; Huang et al., 2003b). Like other 

Major Facilitator Superfamily transporters, RFC exists as a homo-oligomer; however, each 

monomer functions as an independent transport unit and is fully active (Hou and Matherly, 2009; 

Hou et al., 2010). 

Various studies on transcriptional and protein expression levels showed that RFC is 

ubiquitously expressed in tissues where it participates in transporting folate cofactors into cells, 

thus suggesting its integral role in specialized tissues that are important for in vivo folate 

homeostasis. Immunohistochemical analysis demonstrated mouse RFC protein expression on the 

apical brush-border membrane of small intestine and colon, liver hepatocyte membranes, the 

apical surface of the choroid plexus, the basolateral membrane of renal tubular epithelium, and 

the apical membrane of cells lining the spinal canal (Wang et al., 2001b). Measuring 

transcriptional expression of RFC in 76 human tissues and tumor cell lines showed the highest 

levels in placenta and liver, with considerably higher levels in leukocytes, kidney, lung, bone 

marrow and small intestine, and low but detectable levels in heart and skeletal muscle (Whetstine 

et al., 2002a). In at least some tissues (e.g., small intestine), the rodent RFC is responsive to 

dietary folate availability such that under conditions of folate deficiency, increased levels of RFC 

transcripts and proteins are observed (Liu et al., 2005). However, as acidic pH in the gut 

decreases the transport activity of RFC, the significance of this increased expression in the gut is 

unclear. 

1.3.2 Folate Receptor.  
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Folate receptors (FRs),  often referred to as high affinity folate binding proteins, bind and 

transport folic acid, reduced folate, many antifolates and folate conjugates with a high affinity 

(Kd~0.1–1 nM). There are three isoforms of human FR, α, β, and γ, encoded by distinct genes 

(Elwood, 1989; Lacey et al., 1989; Ratnam et al., 1989; Sadasivan and Rothenberg, 1989; Shen 

et al., 1994; Shen et al., 1995), localized on chromosome 11q13.3-q13.5 (Ragoussis et al., 1992). 

The human FR isoforms are homologous, with 68~79% identical amino acid sequences and two 

(β and γ) or three (α) N-glycosylation sites (Roberts et al., 1998; Shen et al., 1997). FRα and β 

are cell surface glycosyl phosphatidylinositol (GPI)-anchored glycopolypeptides, while FRγ 

lacks the signal for GPI-anchor attachment and is therefore a secretory protein with unknown 

function (Shen et al., 1995). Upon binding (anti)folates or folate-conjugates, FR internalizes 

them by a non-classical endocytic mechanism (Figure 1.2) (Rijnboutt et al., 1996; Sabharanjak 

and Mayor, 2004). In this process, folates bind to FRs at the cell membrane, invaginate and bud 

off to form vesicles that are internalized into the intracellular endosomal compartment. Release 

of the ligand from the receptor occurs with a decrease of pH in the endosome and exit from the 

intact vesicle occurs presumably by diffusion or a process that operates optimally at low pH 

(Kamen et al., 1988).  

FR is predominantly expressed on the apical (luminal) surface of polarized epithelial cells 

where it is not in contact with circulating folate (Chancy et al., 2000). In normal tissues, FRα is 

expressed in the brush-border membrane of the choroid plexus, retinal pigment epithelium, 

proximal tubules in kidney, fallopian tubes, uterus and placenta (Elnakat and Ratnam, 2004). 

FRβ expression in normal tissues is only found in placenta and hematopoietic cells (Ratnam et 

al., 1989). In normal bone marrow and peripheral blood cells, expression of FRβ is restricted to 

myelomonocytic lineage such as mature neutrophils, and was reported to have little binding 
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function with folic acid (Pan et al., 2002; Reddy et al., 1999). The polarized expression of FRα 

and β serves to protect normal tissues from FR-targeted cytotoxic agents in the circulation given 

intravenously (Weitman et al., 1992). Overexpression of FRα was reported in several malignant 

tissues including non-mucinous adenocarcinomas of ovary, uterus and cervix and ependymal 

brain tumors (Elnakat and Ratnam, 2004), and was found to positively correlate with tumor 

grade and stage in ovarian tumors (Buist et al., 1995; Garin-Chesa et al., 1993; Veggian et al., 

1989; Wu et al., 1999). The FRα overexpressed in malignant tissues was shown to retain the high 

affinity binding of folate (Ross et al., 1994; Weitman et al., 1992). Malignant expression of FRβ 

is found in all chronic myelogenous leukemia (CML) cells and 70% of acute myelogenous 

leukemia (AML) cells, but not in ALL (Pan et al., 2002; Ross et al., 1999). 

1.3.3 Proton-coupled Folate Transporter.  

In addition to RFC and the FRs, a low-pH folate transport mechanism was observed in 

mammalian cells, but the carrier responsible for this transport activity remained elusive for more 

than three decades.  The transporter that is the basis for this activity and the subject of this 

dissertation has been recently identified and characterized as a proton-coupled folate transporter 

(PCFT; SLC46A1) (Nakai et al., 2007; Qiu et al., 2006; Umapathy et al., 2007; Zhao and 

Goldman, 2007) (Figure 1.2. PCFT is a proton-folate symporter that functions optimally at acidic 

pH by coupling the uptake of folates with the flow of protons down their electrochemical 

concentration gradient. Although human PCFT shares only ~14% amino acid identity with 

human RFC, like RFC, it belongs to the Major Facilitator Superfamily (Zhao and Goldman, 

2007; Zhao et al., 2009a).  Strategies used to clone PCFT included database mining, using the 

conserved amino acid sequence of SLC19 family members, and screening of candidate mRNAs 

in cell lines where the RFC gene was deleted and low pH transport was either retained or 
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markedly decreased (Qiu et al., 2006).  PCFT was initially reported to be a low-affinity heme 

transporter that is pH-independent (Shayeghi et al., 2005).  Although PCFT may be capable of 

heme transport, its primary function appears to be absorption of folates at low pH.   The ability 

of PCFT to transport folate under acidic conditions is important for folate homeostasis, as dietary 

folate absorption in the duodenum and upper jejunum occurs via PCFT (Inoue et al., 2008; Qiu et 

al., 2007). 

1.4 Biology of the Proton-Coupled Folate Transporter.  

1.4.1 PCFT Tissue Expression.  

PCFT is localized to chromosome 17q11.2 in humans and the gene consists of five exons, 

and codes for a 459 amino acid protein with a predicted molecular mass of ~50 kDa. As 

mentioned above, the highest expression levels of PCFT in normal tissues were reported in the 

apical brush-border membrane along the proximal jejunum and duodenum, kidney, liver, 

placenta, spleen, and choroid plexus (Inoue et al., 2008; Qiu et al., 2006; Qiu et al., 2007; 

Urquhart et al., 2010). It has been hypothesized that PCFT may still play a role in folate uptake 

into tissues that do not experience low pH, though whether this is due to localized acidification 

or solely due to the high level of expression, combined with residual transport of 5-methylTHF at 

neutral pH, remains to be determined (Qiu et al., 2006).  Delivery of folates to the central 

nervous system has been proposed to involve PCFT and FRα coupling in the choroid plexus, 

whereby PCFT exports folates from the acidic endocytic compartment created by FRα-mediated 

endocytosis (Zhao et al., 2009b) (Figure 1.2). For the maintenance of cerebrospinal fluid folate, 

the presence of one transporter is inadequate in the absence of the other; therefore, when either 

FR or PCFT is mutated in humans, the syndrome of folate deficiency manifests (Cario et al., 

2009; Steinfeld et al., 2009).    
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A comprehensive examination of PCFT and RFC expression in malignant cell lines and 

tissues has not previously been performed, however, low pH transport of [3H]MTX was detected 

in human solid tumor cell lines from the National Cancer Institute (NCI) 60 tumor panel and 

other sources. In this study MTX influx at pH 5.5 was equal to, or greater than, MTX influx at 

pH 7.4 in 29 of 32 cell lines (Zhao et al., 2004b).  These findings suggest that if the low pH 

transport can be attributed to PCFT-mediated uptake of MTX, designing therapeutics selective 

for PCFT uptake over RFC has the potential of increasing solid tumor selectivity of antifolates.   

1.4.2 Regulation of PCFT Gene Expression.  

Understanding the regulation and silencing of PCFT gene expression is important due to 

the physiologic and pharmacologic importance of PCFT. The PCFT minimal transcriptional 

regulatory region is localized between positions -42 and +96 (the transcriptional start site is +1) 

(Diop-Bove et al., 2009; Stark et al., 2009).  

The promoter of the PCFT gene harbors a 1085-bp CpG island (nucleotides −600 through 

+485) and hence the extent of methylation is a possible mechanism of PCFT transcriptional 

control. Hypermethylation of the PCFT promoter was shown to be associated with low PCFT 

gene and protein expression in CCRF-CEM and Jurkat T-cell leukemia cell lines (Gonen et al., 

2008) and a MTX-resistant HeLa cell line (R1) (Diop-Bove et al., 2009). In both cases, treatment 

with the DNA methyltransferase inhibitor, 5-aza-2’-deoxycytidine, resulted in substantial 

restoration of pH 5.5 transport and PCFT mRNA expression.  Folate status can affect 

methylation of CpG islands of DNA and of histones through their requirement in vitamin-B12-

dependent synthesis of methionine, a precursor of SAM (Stokstad, 1990). To this end, 

hypomethylation can accompany folate deficiency under some conditions (Wasson et al., 2006). 

Hence, control of PCFT expression through methylation provides an elegant method of altering 
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uptake in the face of folate excess or deficiency (Zhao et al., 2011a). Additionally, low dose 5-

aza-2’deoxycytidine treatment may restore PCFT-mediated transport of antifolates in patients 

with acquired resistance due to methylation of the PCFT promoter.  

PCFT mRNA levels are also controlled by 1,25-dihydroxyvitamin D3 (vitamin D3), and 

expression of PCFT is increased in a dose-dependent fashion in Caco-2 cells in vitro and in 

duodenal rat biopsies ex vivo when treated with vitamin D3. Vitamin D receptor (VDR) 

heterodimerizes with retinoid X receptor-α (RXRα) in response to vitamin D3 and binds a VDR 

response element in the PCFT promoter region (-1694/-1680), increasing expression and 

therefore function of PCFT (Eloranta et al., 2009). This finding suggests that vitamin D3 

supplementation could affect the bioavailability or toxicity of PCFT-targeted therapeutics in the 

clinic and may be an important consideration in the design of clinical trials. 

Three adjacent putative binding sites for the nuclear respiratory factor 1 (NRF-1) 

transcription factor were identified in the PCFT minimal promoter. NRF-1 was found to bind and 

transactivate the human PCFT promoter leading to an increase in PCFT mRNA levels (Gonen 

and Assaraf, 2010). NRF-1 is a major regulator of mitochondrial biogenesis (Scarpulla, 2002; 

Scarpulla, 2006; Scarpulla, 2008; Scarpulla, 2011). Folates play an important role in 

mitochondrial integrity, and folate deficiency has been found to cause large mitochondrial 

deletions, cytochrome c dysfunction, membrane depolarization and superoxide overproduction 

(Chang et al., 2007). Interestingly, NRF-1 has been found to up-regulate the bi-directional 

transcription of glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) (reaction 1) 

and phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole 

succinocarboxamide synthetase (PAICS) (reaction 6 and 7) which are both enzymes needed for 

de novo purine biosynthesis (Figure 1.5) (Brayton et al., 1994; Chen et al., 1997). Thus, NRF-1 
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may function to coordinate mitochondrial respiration-biogenesis with folate uptake, folate 

metabolism and de novo purine biosynthesis (Gonen and Assaraf, 2010).  

1.4.3 Hereditary Folate Malabsorption.  

Direct evidence that PCFT is responsible for low-pH transport and intestinal folate 

absorption came from the discovery that homozygous mutations in the coding region of the 

PCFT gene leads to the rare autosomal recessive disorder, hereditary folate malabsorption 

(HFM) (Atabay et al., 2010; Borzutzky et al., 2009; Geller et al., 2002; Lasry et al., 2008; 

Mahadeo et al., 2010; Mahadeo et al., 2011; Meyer et al., 2010; Min et al., 2008; Qiu et al., 

2006; Shin et al., 2011; Shin et al., 2010; Zhao et al., 2007).  HFM is characterized by the onset 

of macrocytic folate-deficiency, anemia, and failure to thrive within the first few months of life. 

This may be accompanied by hypoimmunoglobulinemia associated with infectious 

complications, most frequently Pneumocyctis jiroveci pneumonia. The syndrome is characterized 

by developmental delays, gait disorders, peripheral neuropathies, and, in the absence of adequate 

and timely treatment, seizures (Geller et al., 2002; Mahadeo et al., 2010). Loss of PCFT function 

leads to impaired intestinal folate absorption, resulting in severe folate deficiency and impaired 

transport of folates across the choroid plexus into the central nervous system, reflecting the 

important physiological functions of PCFT folate transport (Zhao et al., 2009a). The fact that 

subjects who are PCFT null develop severe folate deficiency indicates that RFC does not 

contribute significantly to folate absorption under these conditions (pH 5.8-6.0) despite its 

presence in the intestinal epithelium. Many insights into the structure and function of PCFT have 

been gained by mechanistically evaluating the HFM loss-of-function mutations (Figure 1.3; 

Figure 1.4; Table 1.1).  
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Figure 1.4 Amino acid sequence alignment of PCFT homologs from different species. 
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The first exon, particularly nucleotides encoding extracellular loop 1 (EL1) between the first and 

second transmembrane domains, has a high GC content, 65.8% (75% between residues 63 and 

70), and is the most frequent site of PCFT mutations in subjects with HFM (Shin et al., 2011). 

There are five reported mutations. These include four frame-shifts: c.17-18insC, p.E9Gfs (Shin 

et al., 2011); c.194delG, p.G65Afs (Zhao et al., 2007); c.194dupG, p.C66Lfs (Meyer et al., 

2010); and c.204-205delCC, p.N68Kfs (Atabay et al., 2010; Shin et al., 2011) and a stop codon 

(c.GC197AA; p.C66X (Min et al., 2008)) (See Table 1.1 for references describing various HFM 

mutations). These genetic alterations led to truncation of PCFT and loss of PCFT expression and 

function. Additionally, a number of residues identified in patients with HFM, (c.G439C, 

p.G147R in TMD4 (Zhao et al., 2007); c.G466T, p.D156Y in TMD4 (Shin et al., 2010); 

c.C954G, p.S318R in TMD8 (Zhao 2007); c.C1004A, p.A335D in TMD9 (Shin 2011) and 

c.G1012C, p.G338R in TMD9 (Shin 2011)) (Figure 1.3 and Table 1.1) when mutated lead to no 

or very low (13% of wild-type (WT) for G147R) levels of transport of either 5-methylTHF or 

MTX. Point mutations involving either Arg113 to serine (c.C337A, p.R113S (Zhao et al., 2007)) 

or cysteine (c.C337T, p.R113C (Lasry et al., 2008)) and either Arg376 to tryptophan (c.C1126T, 

p.R376W (Mahadeo et al., 2010)) or glutamine (c.G1127A, p.R376Q (Mahadeo et al., 2010)) 

have been found in two unrelated families with HFM.  Characterization of these mutations 

suggested that mutation of Arg113 may affect binding and/or translocation of negatively charged 

folate substrates and mutation of Arg376 may affect proton binding and therefore modulates the 

folate-binding pocket in a substrate-dependent manner. Please see section 1.4.4.3 for a more in 

depth discussion of the importance of these residues for PCFT function. Interestingly, most point 

mutations associated with HFM occur in TMDs or at TMD junctions. TMD4 and 9 contain the 

most mutations (Figure 1.3) (Zhao et al., 2011b). The mutation c.G1082-1A is located in the 
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splice acceptor of intron 2 (intron 2/exon 3 boundary), causing skipping of exon 3 which creates 

a splice variant that results in deletion of 28 amino acids in TMD10 and IL5 (p.Y362_G389del). 

This mutation results in a protein with decreased stability and impaired trafficking to the cell 

membrane and was identified in eight unrelated families of Puerto Rican heritage (Borzutzky et 

al., 2009; Mahadeo et al., 2011; Qiu et al.). Finally, the residue Pro425 in the EL6 was found to 

be mutated (c.C1274G, p.P425R) in a family of Arab descent. This mutation only slightly 

impacted cell surface expression of PCFT, but function was 3.5-5% of WT (Shin et al., 2012; 

Zhao et al., 2007). Interestingly, combined WT and inactive mutant P425R PCFTs were targeted 

to the cell surface by surface biotinylation/Western blotting and confocal microscopy, and 

functionally exhibited a “dominant-positive” phenotype, implying positive cooperativity between 

monomers comprising oligomeric PCFT and functional rescue of mutant by WT PCFT (Hou et 

al., 2011) (see section 1.4.4.4). 

A possible mechanism of resistance to antifolates selective for PCFT-mediated uptake 

may be loss of PCFT function; therefore a better understanding of the impact of mutations on 

PCFT structure and function could provide insight into possibly reversing future cases of 

resistance. 

1.4.4 Structure and Function of PCFT.  

1.4.4.1 Topology.  

Based on hydropathy plot analysis, the membrane topology of PCFT is predicted to 

include twelve TMDs with the N- and C- termini directed into the cytoplasm (Figure 1.3) (Zhao 

and Goldman, 2007; Zhao et al., 2009a).  Orientation of the N- and C- termini was validated by 

immunofluorescence analysis of HA-tagged PCFT.  The loop domain between TMD1 and 

TMD2 was found to be extracellular since the two predicted N-glycosylation sites (Asn58, 
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Asn68) in this region are glycosylated (Figure 1.3).  N-linked glycosylation at the above 

mentioned sites was validated by Peptide: N-Glycosidase (PNGase) F cleavage of the 

oligosaccharide, tunicamycin inhibition of N-linked glycosylation and site-directed mutagenesis 

of Asn58 and Asn68.  Trafficking and function of PCFT was not affected by N-glycosylation 

status (Unal et al., 2008).  In MDCK and Caco-2 cells, C-terminal-tagged yellow fluorescent 

protein (YFP) PCFT was functionally expressed at the apical membrane, which is different from 

the basolateral localization for RFC (Subramanian et al., 2008).  Complete truncation of the 

PCFT C-terminal region had no significant effect on either apical cell surface targeting or 

transport function (Subramanian et al., 2008). A disulfide bond exists that is not important to 

function that links Cys66 in the first extracellular loop to Cys298 in the fourth extracellular loop 

(Zhao et al., 2010).  

1.4.4.2 Transport Characteristics.  

PCFT has similar affinities (Kt ~ 0.5-1.0 µM) for reduced (5-methylTHF, 5-formylTHF) 

and oxidized (folic acid) folates at pH 5.5 and is stereospecific for 5-formylTHF (Zhao and 

Goldman, 2007). Folic acid and MTX uptake in Xenopus laevis oocytes was increased > 200 fold 

at pH 5.5 when injected with PCFT cRNA (Qiu et al., 2006; Qiu et al., 2007).  Increased low-pH 

(pH 5.5) transport was also observed when PCFT cDNA was transiently transfected into HeLa 

cells or stably transfected into HepG2 cells (Zhao et al., 2008).  When PCFT was silenced with 

interfering RNAs, the low-pH transport of Caco-2 was reduced by 80% (Qiu et al., 2006).  PCFT 

transport activity was highest at the lowest pH (pH 5.5) and declined as the pH increased (pH 

7.4).  Uptake by PCFT conformed to Michaelis-Menten kinetics.  The Kt increased and Vmax 

decreased as the pH increased from pH 5.5 to pH 7.4 (Qiu et al., 2006; Zhao and Goldman, 

2007). The activity of PCFT is not affected by removal of extracellular Na+, K+, Ca+2, Mg+2 or 



www.manaraa.com

 

 

22

Cl- (Qiu et al., 2006).  Dissipation of the transmembrane proton-gradient by carbonylcyanide p-

trifluoromethoxyphenylhydrazone (FCCP) (a proton ionophore) (Qiu et al., 2006) and nigericin 

(a K+/H+-exchanging ionophore) (Inoue et al., 2008) in Xenopus oocytes and HEK293 cells, 

respectively, reduced transport by PCFT.  Studies in Xenopus oocytes have demonstrated that 

folate transport by PCFT is electrogenic, where there is a net translocation of positive charge as 

each negatively charged folate molecule is transported.  Assuming that folates are bivalent 

anions, more than two protons must be co-transported with each folate molecule to account for 

the net transport of positive charge (Qiu et al., 2006; Qiu et al., 2007).  Cellular acidification that 

accompanies folate transport into oocytes was measured, confirming proton coupling (Unal et 

al., 2009a). Conversely, in HEK293 cells, transport by PCFT was insensitive to membrane 

potential, suggesting potential-independent, non-electrogenic transport, although in either case 

there was still a requirement for an inwardly directed proton gradient (Inoue et al., 2008). PCFT 

functions even when there is no transmembrane pH gradient, based partly on the membrane 

potential. At pH 7.4, when the membrane potential is increased, folate-induced currents are 

increased (Qiu et al., 2006; Umapathy et al., 2007). At low pH, PCFT has also been found to 

have channel-like activities, where protons can flow uncoupled from the flow of folates 

(Mahadeo et al., 2010; Unal et al., 2009a). Anionic compounds, sulasalazine and pyrimethamine 

were found to be weak inhibitors of PCFT-mediated uptake with Ki values of 42.3 and 161.1 

µM, respectively. One could envision that the efficiency of intestinal folate absorption or the 

efficacy of orally administered PCFT-selective antifolates for cancer therapy would be affected 

in subjects administered these compounds (Inoue et al., 2008; Nakai et al., 2007; Urquhart et al., 

2010). Hence, it is important to gain a better understanding of PCFT substrate affinity and 
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transport characteristics to create better PCFT substrates and avoid drug interactions during 

clinical administration. 

1.4.4.3 Functionally Important Residues.  

Functional analysis of HFM mutations and mutations generated by site-directed 

mutagenesis have identified residues that are important in PCFT structure and function.  

Arg113 was found to be mutated in two unrelated families of Turkish (c.C337A, 

p.R113S) and Arab (c.C337T, p.R113C) descent by two independent investigators (Lasry et al., 

2008; Zhao et al., 2007). The residue Arg113 is found in the highly conserved (Figure 1.4) IL1 

motif D109XXGRR114 connecting TMD2 and TMD3 in PCFT (Table 1.1; Figure 1.3). When 

expressed in C5 MTXR0.15 CHO cells, R113C PCFT was expressed at the cell surface, but did 

not transport folic acid or MTX (Lasry et al., 2008). Similarly, when R113S PCFT was 

expressed in WT HeLa cells, no protein was found at the cell surface and no transport of 5-

methylTHF was detected (Zhao et al., 2007). Since the recently crystallized E coli GlpT shares 

several structural and functional characteristics with PCFT and is the closest structural homolog 

with 13.8% sequence similarity over 424 aligned amino acid residues (from a total of 459), GlpT 

was used as a template in a homology-based structural model to analyze the structure of the IL1.  

Homology modeling analysis predicted that the DXXGRR motif forms a β-turn whereas the 

cationic R113 residue of PCFT is completely buried in a putative hydrophobic cavity, the walls 

of which are made up of TMD1, TMD3, TMD4, and TMD6.  It was suggested that R113 might 

possibly participate in the binding and/or translocation of negatively charged folate substrates 

(Lasry et al., 2008).  Alanine mutagenesis across this stretch disrupted the β turn and resulted in 

endoplasmic reticulum retention with loss of transport (Subramanian et al., 2008).  
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Arg376 is a highly conserved residue (Figure 1.4) that has been found to be mutated in 

two unrelated families with HFM of Mexican (c.C1126T, p.R376W) (Mahadeo et al., 2010; 

Zhao et al., 2007) and Chinese (c.G1127A, p.R376Q) descent (Table 1.1; Figure 1.3). When 

expressed in R1-11 HeLa cells, R376W was expressed in crude membranes and localized to the 

membrane similar to WT; however, no transport of 5-methylTHF, 5-formylTHF, folic acid, 

MTX and PMX could be detected (Zhao et al., 2007). When explored more rigorously, it was 

found that a positive charge is favored at this residue. Interestingly, when this residue was 

mutated to a polar amino acid, as found in the HFM R376Q mutant, PMX transport activity was 

preserved at saturating concentrations (influx Kt increased and Vmax decreased); however, no or 

very low transport of 5-methylTHF, 5-formylTHF, folic acid and  MTX was detected. This 

mutant was expressed in crude membranes and localized to the membrane at levels 50% of WT. 

The data suggest that mutation of the R376 residue to glutamine impairs proton binding which, 

in turn, modulates the folate-binding pocket and depresses the rate of conformational alteration 

of the carrier, a change that appears to be, in part, substrate dependent (Mahadeo et al., 2010; 

Mahadeo et al., 2011).  

Histidine has been shown to be critical for the function of some of the proton-coupled 

solute carriers (Fei et al., 1997; Lam-Yuk-Tseung et al., 2003; Metzner et al., 2008). There are 

ten His residues in PCFT; of these, His84, 247 and 281 are fully conserved across all species 

(Figure 1.4) and mutation of His281 and His247 to alanines caused loss of MTX transport 

function at pH 5.5 and pH 7.0. H247A (located in IL3) and H281A (located in TMD7) (Figure 

1.3) were expressed to the same extent as WT, except the H247A mutant protein migrated faster 

by SDS PAGE than WT or H281A. This was not due to protein instability. Independent of 

changes in Vmax, H247A had increased affinity for folic acid, 5-formylTHF and 5-methylTHF 
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compared to WT. The affinities for all the different substrates were very similar, which is in 

contrast to results for WT PCFT (Unal et al., 2009a). GlpT was used as a template in a 

homology-based structural model to analyze the role of His247 in PCFT function. The model 

predicted His247 to be localized in a highly electropositive region at the cytoplasmic opening to 

the water-filled translocation pathway. Additionally, the model predicted that His247 interacts 

with Ser172 and limits access of extracellular folate substrates, thus determining the selectivity 

of PCFT for folate. Ser172 mutated to alanine caused a similar change in influx Kt, as caused by 

the His247 mutation. Additionally, the mutant exhibited folate-independent proton transport or 

“slippage”. Mutation of His281 to alanine produced a substantially different phenotype, 

characterized by increased influx Kt and maintenance of a selectivity profile similar to WT 

PCFT. The magnitude of the increase in folic acid transport as a function of pH was far less; 

however there was still folate-induced cellular acidification. Therefore, His281 is not needed in 

proton –coupling but protonation of this residue may result in increased binding of folate 

substrates (Unal et al., 2009a).  

More rigorous evaluation of the HFM mutant, D156Y, revealed that Asp 156 is important 

for protein stability (Table 1.1; Figure 1.3) (Shin et al., 2010). Loss of stability was observed 

with a variety of polar, neutral, or positively charged mutants. However, stability and trafficking 

were preserved with a Gly (relatively polar) or, to a lesser extent, with Ser (polar) substitutions. 

All the residues that are point mutated in HFM are completely conserved across all the species 

analyzed, demonstrating their importance for expression and function of PCFT (Figure 1.4). 

Discovery and characterization of the D156Y mutation in HFM led to rigorous analysis of the 

other 6 conserved Asp residues in PCFT. Only one, Asp109, is shown to be required for 

function. No substitution, irrespective of charge or polarity preserved function, even conservative 
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substitutions. All of the Asp109 mutants were expressed and were detectable at the cell 

membrane at levels similar to WT, but no MTX transport was detected at high MTX 

concentrations and when the extracellular proton concentration was increased. This suggested 

that the loss of activity was not due to an increase in influx Kt, like the R376Q mutation, or that 

there was a decrease in affinity of a proton-binding site that allosterically alters the conformation 

of the folate-binding pocket, like the H281A mutation. Additionally, lack of activity at pH 7.4 

excludes a role of this residue for proton-coupling. The Asp109 is found in IL1 like the R113S 

and R113C HFM mutations. When Asp109 was replaced with other amino acids (even 

glutamate), substrate either does not bind and/or the alternative-access mechanism of transport is 

impaired (Figure 1.3) (Shin et al., 2010).    

Conserved, charged residues located in TMDs are preserved through evolution because 

they usually contribute by intramolecular interactions to the stabilization of transporter tertiary 

structure and are therefore important for function of the carrier (Zvelebil et al., 1987). The 

residue Glu185 when mutated to leucine or alanine resulted in loss of MTX transport at pH 5.5 

due to a decrease in the influx Vmax with no change in influx Kt. The preservation of a negative 

charge at position 185 is essential, since low pH transport was lost for all E185 substitutions 

regardless of charge and polarity except for the similarly charged E185D, which maintained a 

third of WT function. Unexpectedly, transport at pH 7.4 for the E185A mutant was comparable 

to that of WT.  This suggests that Glu185 plays an important role in proton-coupling (Figure 1.3) 

(Unal et al., 2009b). 

1.4.4.4 Oligomerization.  

As mentioned previously, PCFT belongs to the Major Facilitator Superfamily of 

transporters. Since numerous Major Facilitator Superfamily proteins including LacS (Veenhoff 
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et al., 2001), AE1 (Dahl et al., 2003; Taylor et al., 2001), GLUT1 (Zottola et al., 1995), TetA 

(Hickman and Levy, 1988; Yin et al., 2000), and RFC (Hou and Matherly, 2009) have been 

reported to exist as oligomers (e.g., dimers, tetramers, etc.), and given the potential mechanistic 

and regulatory ramifications of such structures for PCFT, the oligomerization status was 

evaluated (Hou et al., 2011). The HFM mutation P425R (described in section 1.4.3 and Zhao et 

al. (2007)) was used in conjunction with an assortment of biochemical and molecular techniques 

to validate the existence of PCFT homo-oligomers. By protein cross-linking, oligomeric PCFT 

appeared to predominate over monomeric PCFT. On a non-denaturing blue-native-PAGE, 

dimeric PCFT was the most predominant species. HA and FLAG/His 10 epitope-tagged PCFT 

protein monomers co-localized to the plasma membrane. PCFT monomers associate when 

analyzed using Ni affinity chromatography. FRET was detected between two YPet and ECFP-

tagged PCFT monomers. Finally, co-expression of WT PCFT with P425R PCFT monomers led 

to a dominant-positive transport phenotype. This appeared to involve co-folding and increased 

surface trafficking of P425R PCFT to the cell surface, as reflected in increased surface levels of 

mutant PCFT protein by surface biotinylation and Western blotting, and by indirect 

immunofluorescence and confocal microscopy. Thus, not only does PCFT exist as a homo-

oligomer but there is functional cooperation between PCFT monomers in facilitating transport of 

folate substrates (Hou et al., 2011). Interestingly, the PCFT primary structure includes GXXXG 

motifs in TMD2 (amino acids 93-97) and TMD4 (amino acids 155-159) (Figure 1.3), analogous 

to “dimerization motifs” implicated in the oligomerization of other amphipathic proteins, 

including, ABCG2 and OAT1 (Duan et al., 2011; Polgar et al., 2010). Additionally, a cluster of 

PCFT nonfunctional mutations have been found in TMD4 (G147R, D156Y and L161R), 

suggesting that this region may be important in oligomerization (Figure 1.3 and Figure 1.4). A 
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better understanding of the structural and regulatory determinants of PCFT oligomerization may 

lead to novel approaches for therapeutically rescuing functionally impaired PCFT mutants in 

HFM or that may arise as a form of resistance to PCFT-selective novel folate analogs, perhaps 

with PCFT peptidomimetics or small molecules.  

1.5 The Role of Antifolates in Cancer Therapy. 

1.5.1 Inhibition of De Novo Thymidylate Biosynthesis Pathway.  

Antifolates that inhibit DHFR, such as the classic antifolates, AMT and MTX, and the 

newer generation antifolates, pralatrexate (PDX) and the non-polyglutamable PT523 (Figure 1.1 

and 1.2), block the regeneration of unsubstituted THF from DHF. This causes a depletion of THF 

cofactors and the accumulation of DHF, resulting in cessation of one-carbon-dependent 

processes (Matherly et al., 1987a; Seither et al., 1989). AMT has a much higher binding affinity 

for RFC and FPGS than MTX and is therefore transported into the cell and metabolized to 

polyglutamates much more rapidly (Smith et al., 1996). This increases the activity of AMT 

clinically, but also increases the toxicity of the compound compared to MTX (Goldin et al., 

1955). PDX was discovered through drug development efforts of F.M. Sirotnak and colleagues at 

Memorial Sloan Kettering Cancer Center and J. DeGraw and coworkers at the Southern 

Research Institute. They found that 10-deaza-AMT was more potent than MTX (Sirotnak et al., 

1984) and that the 10-ethyl derivative of 10-deaza-AMT (edatrexate) had even better efficacy 

both preclinically and clinically (Beinart et al., 2007; Gralla, 1995; Schmid et al., 1985; Shum et 

al., 1988; Sirotnak et al., 1993; Vandenberg et al., 1993). Based on the finding of Jones et al. 

(1981) that the N-10-propargyl analog of 5,8-dideazafolic acid (CB 3717) possessed potent 

inhibitory activity against TS (discussed in more detail below), 10-propargyl-10-deaza-AMT 

(PDX) was synthesized and tested to evaluate the effect of the propargyl group on growth 
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inhibition. It was found that PDX had a 3-fold decreased affinity for DHFR and a 10-fold RFC 

transport advantage compared to MTX, resulting in 5-fold enhanced anti-proliferative activity 

(DeGraw et al., 1993; Sirotnak et al., 1998). In September 2009, the FDA approved the use of 

PDX for the treatment of relapsed, refractory peripheral T-cell lymphoma (Thompson, 2009). 

Since then, PDX has been evaluated clinically either alone or in combination with other agents in 

a wide range of malignancies with promising results (Azzoli et al., 2007; Marchi et al., 2010; 

Toner et al., 2006; Zain and O'Connor, 2010a; Zain and O'Connor, 2010b).  

Raltitrexed (RTX; Tomudex) is a potent TS inhibitor and arose from rational drug design 

efforts of researchers from the Institute for Cancer Research and Astra Zeneca (Figure 1.1 and 

1.2) (Calvert et al., 1980). Previous work demonstrated that 5,8-dideazafolic acid was a weak 

inhibitor of TS; sequential modification of this compound produced N10-propargyl-5,8-

dideazafolic acid or CB3717 (Calvert et al., 1986; Jones et al., 1981). In the initial phase I/II 

clinical trials, this drug had activity against ovarian, liver, and breast cancer but also resulted in 

troublesome hepatic toxicity and dose-limiting nephrotoxicity, which occurred in 70% of patients 

at doses greater than 450 mg/m2 )(Jackman and Calvert, 1995). To try and reduce toxicity, efforts 

were made to make the compound more water soluble at physiological pH; this was achieved by 

removing the 2-amino group and synthesizing a 2-desamino-2-methyl compound (ICI 198583) 

(Jackman et al., 1991b). Finally, replacement of the para-aminobenzoate with a thiophene and 

introduction of a N10-methyl substituent produced ZD1694 or RTX (Jackman et al., 1996; 

Jackman et al., 1991a; Jackman et al., 1991c). RTX had reduced TS inhibition compared to 

CB3717 but showed enhanced cellular uptake by RFC and polyglutamylation, leading to more 

potent tumor growth inhibition both in vitro and in vivo (Gibson et al., 1993; Jackman et al., 

1993; Jackman et al., 1991c). This drug discovery effort exemplifies the power of establishing 
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structure activity relationships (SAR) through careful cellular, biochemical and pharmacological 

evaluation to test each chemical modification. RTX was approved for clinical use outside the US 

for advanced colorectal cancer (Chu et al., 2003).  

Antifolates that target TS (Matsui et al., 1996; Yin et al., 1997), and DHFR (Benigni et 

al., 1983; Lorico et al., 1988) decrease levels of deoxythymidine triphosphate (dTTP), which 

results in a “thymineless” death.  The decreased dTTP levels cause misincorporation of 

deoxyuridine triphosphate (dUTP) in place of dTTP into newly synthesized DNA.  The dUTP is 

recognized as incorrect and cycles of futile excision-repair ensue, ultimately leading to DNA 

strand breaks and cell death (Bronder and Moran, 2003). 

1.5.2 Inhibition of De Novo Purine Biosynthesis Pathway.  

Purines serve as building blocks of RNA and DNA; they regulate enzymatic activity as 

components of vitamins and cofactors, and mediate energy transfer in the cell (King et al., 1983). 

Most differentiated adult cells can satisfy their purine requirements through purine salvage 

mechanisms (Howell et al., 1981; Jackson and Harkrader, 1981; King et al., 1983; LeLeiko et al., 

1983; Mackinnon and Deller, 1973). Conversely, proliferating cells, such as activated T-cells and 

tumor cells, require activation of de novo purine synthesis in order to meet the greater nucleotide 

demands for DNA and RNA synthesis (Denkert et al., 2008; Fairbanks et al., 1995; Howell et al., 

1981; Jackson and Harkrader, 1981; Kondo et al., 2000). Inhibitors of de novo purine 

biosynthesis inhibit lymphocyte and tumor cell growth, which suggests that purine salvage 

pathways are insufficient to support nucleotide synthesis (Christopherson et al., 2002; Hovi et 

al., 1976). Interestingly, even though bone marrow progenitor cells and intestinal crypt cells are 

highly proliferative they rely principally on purine salvage for their purine demands. This is 

reflected in the high levels of purine precursors such as hypoxanthine (~7-11 µM, three to four 
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times higher than plasma levels) in these tissues, which can not only be salvaged but can also 

directly inhibit de novo purine biosynthesis (Howell et al., 1981; King et al., 1983; LeLeiko et 

al., 1983; Mackinnon and Deller, 1973).  

Biosynthetically, adenosine and guanosine nucleotides are derived from inosine 

monophosphate (IMP), which is synthesized from phosphoribosyl pyrophosphate (PRPP) in both 

salvage and de novo synthesis of purines. PRPP is formed by PRPP synthetase which uses ATP 

to activate ribose-5-phosphate (made through the pentose phosphate shunt from glucose). In the 

salvage pathway, PRPP is used by either hypoxanthine phosphoribosyl transferase (HPRT) to 

convert guanine and hypoxanthine back into GMP and IMP, respectively, or by adenine 

phosphoribosyl transferase (APRT) to convert adenine back into AMP (Murray, 1971). While 

the salvage of purines is a one-step conversion, the de novo purine synthesis pathway consists of 

ten reactions catalyzed by 6 enzymes that convert PRPP into IMP, which is subsequently used to 

synthesize AMP and GMP (Figure 1.5). Synthesis of IMP occurs in the cytosol and requires five 

moles of ATP, two moles of glutamine, one mole of glycine, one mole of CO2, one mole of 

aspartate and two moles of formate per mole of IMP. The enzymatic reaction and intermediates 

of the de novo purine biosynthesis pathway were largely characterized in seminal experiments by 

Buchanan and colleagues in avian models in the 1950s and 1960s (Hartman and Buchanan, 

1959a). They have since been found to be conserved in species ranging from bacteria to humans.  

The first reaction is the rate-limiting step and involves the conversion of PRPP into 5-

phosphoribosylamine by glutamine phosphoribosylpyrophosphate amidotransferase (GPAT), 

which entails replacement of the pyrophosphate of PRPP by the amide group of glutamine 
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Figure 1.5 De novo purine nucleotide biosynthesis pathway. The de novo purine nucleotide 
biosynthetic pathway from phosphoribosyl pyrophosphate (PRPP) to IMP is shown. The 
numbered reactions are catalyzed by the following monofunctional enzymes: 1, glutamine 
phosphoribosylpyrophosphate amidotransferase (GPAT); 4, formylglycinamide ribonucleotide 
synthase (FGAM synthetase); 8, adenylosuccinate lyase (ASL). Reactions 2, 3 and 5 are 
catalyzed by the trifunctional glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) 
which contains GAR synthase (GARS; reaction 2), GAR formyltransferase (GARFTase; reaction 
3) and 5-aminoimidazole ribonucleotide synthase (AIRS; reaction 5) activities. Reactions 6 and 7 
are catalyzed by the bifunctional phosphoribosylaminoimidazole carboxylase/ 
phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) enzyme, which 
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contains carboxyaminoimidazole ribonucleotide synthase (CAIRS; reaction 6) and 5-
aminoimidazole-4-(N succinylocarboxamide ribonucleotide synthase (SAICARS; reaction 7) 
activities. Reactions 9 and 10 are catalyzed by a bifunctional enzyme, 5-Amino-4-
imidazolecarboxamide ribonucleotide formyltransferase/ IMP cyclohydrolase (ATIC) that 
sequentially catalyzes the last two steps in the pathway for de novo synthesis of IMP. ATIC has 
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) formyltransferase (AICARFTase; 
reaction 9) and inosine monophosphate cyclohydrolase (IMPCH; reaction 10) activities. There 
are two folate-dependent reactions (reaction 3 and 9) in which 10-formyl tetrahydrofolate serves 
as the one-carbon donor catalyzed by GARFTase and AICARFTase. 5-aminoimidazole-4-
carboxamide (AICA) and AICAR can be metabolized to AICAR monophosphate (ZMP) by 
either adenine phosphoribosyl transferase (APRT) or adenosine kinase (AK), thus circumventing 
the reaction catalyzed by GARFTase. For the in situ GARFTase assay, incorporation of 
[14C]glycine into [14C]F-GAR in the presence of azaserine is used as a direct measure of 
GARFTase activity. 
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 (reaction 1). Subsequent steps involve three multifunctional enzymes: a trifunctional protein 

GARFTase, that has GAR synthase (GARS; reaction 2), GAR formyltransferase (GARFTase; 

reaction 3), and 5-aminoimidazole ribonucleotide synthase (AIRS; reaction 5) activities; a 

bifunctional enzyme, phosphoribosylaminoimidazole carboxylase/ 

phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), that has 

carboxyaminoimidazole ribonucleotide synthase (CAIRS; reaction 6) and 5-aminoimidazole-4-

(N succinylocarboxamide ribonucleotide synthase (SAICARS; reaction 7) activities; and a 

bifunctional enzyme, 5-Amino-4-imidazolecarboxamide ribonucleotide formyltransferase/ IMP 

cyclohydrolase (ATIC), that has 5-aminoimidazole-4-carboxamide ribonucleotide 

formyltransferase (AICARFTase; reaction 9) and IMP cyclohydrolase (IMPCH; reaction 10) 

activities. The remaining steps are catalyzed by monofunctional enzymes, formylglycinamide 

ribonucleotide synthase (FGAM synthetase; reaction 4) and adenylosuccinate lyase (ASL; 

reaction 8). The formate that is used by GARFTase and AICARFTase to supply the number 2 

and number 8 carbons of the purine ring is carried by THF in the form of 10-formylTHF 

(Hartman and Buchanan, 1959a; Hartman and Buchanan, 1959b). 

In a continued effort to find other inhibitors of folate metabolism at sites other than 

DHFR, a “critical bond blocking” strategy was employed by a joint collaboration between E.C. 

Taylor at Princeton and a team of chemists at Eli Lilly led by Chuan (Joe) Shih. This effort 

resulted in the synthesis of the 6R diastereomer of 5,10-dideazatetrahydrofolate (DDATHF) or 

LMX (Figure 1.1), which is structurally identical to natural THF except the nitrogen atoms at 

positions 5 and 10 that participate in all of the one-carbon transfers are replaced by carbons 

(Moran et al., 1989; Taylor et al., 1985). LMX is transported into the cell by RFC (Westerhof et 

al., 1995), polyglutamylated by FPGS (Baldwin et al., 1991) and inhibits GARFTase leading to 
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ATP and GTP depletion (Figure 1.2) (Beardsley et al., 1989).   Phase I clinical investigation of 

LMX found that without folic acid co-administration, LMX caused severe cumulative toxicity, 

with myelosuppression (anemia, thrombocytopenia and neutropenia) and mucositis being dose 

limiting (Ray et al., 1993). With folic acid co-administration, there was a reduction in the clinical 

toxicity, permitting a dose of greater than 10 times that in the absence of supplementation 

(Roberts et al., 2000a). It was thought that the delayed and cumulative toxicity may result from 

gradual release of LMX metabolites from the liver resulting in an extended γ-phase plasma half 

life (Taber et al., 1991). One hypothesis was that folate depletion increased the expression of FR 

and this was contributing to greater cellular uptake in the liver and hence greater toxicity of 

LMX (Mendelsohn et al., 1996; Pohland et al., 1994). Another hypothesis was that 

thrombocytopenia occurred because platelets have the highest requirement for ATP than any 

other cell of the body. It is delayed because of the long maturation time of megakaryocytes 

(which is probably further extended under conditions of purine shortage), and it may be 

irreversible because the polyglutamate forms of LMX turn over very slowly such that, once 

formed, they are effectively impossible to eliminate (Jackman, 1999). In an effort to reduce 

toxicity, second generation inhibitors were synthesized. LY309887 was designed to have lower 

FRβ affinity (Wang et al., 1992), reduced polyglutamylation (Mendelsohn et al., 1996) and a 9-

fold increased affinity for GARFTase compared to LMX (Budman et al., 2001; Mendelsohn et 

al., 1999). Additionally, structure-based drug-design was used to design AG2034, which was 

based on the X-ray crystal structures of the E. coli GARFTase and of the GARFTase domain of 

the human enzyme. Like LY309887, preclinical enzyme inhibition studies showed that AG2034 

was a potent inhibitor of GARFTase (Almassy et al., 1992; Boritzki et al., 1996). However, 

clinical evaluation of both these compounds demonstrated the same delayed, cumulative toxicity 
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as observed with LMX (Bissett et al., 2001; Boritzki et al., 1996; Budman et al., 2001; Kisliuk, 

2003; Roberts et al., 2000b). Continued toxicity of these compounds, even with altered FR 

affinity, suggests that FR-mediated uptake in the liver is not a major determinant of toxicity and 

implies another transport-mediated process in the liver, most likely RFC (given the neutral pH 

microenvironment), that may be the true source of toxicity. Thus, GARFTase inhibitors with 

PCFT selectivity may have the potential of improving the efficacy and reducing the toxicity of 

antipurine antifolates in the clinic (Goldman et al., 2010).  

GARFTase inhibitors block de novo purine synthesis, leading to a rapid decline in ATP 

and GTP pools (Beardsley et al., 1989; Boritzki et al., 1996; Chen et al., 1998; Pizzorno et al., 

1991).  Unlike TS and DHFR inhibitors, reduction of purine pools does not necessarily induce 

DNA strand breaks.  There are two principle hypotheses as to how GARFTase inhibitors impact 

p53, cell cycle and cell death. The first proposed by Zhang et al. (1998a) states that reduction of 

ribonucleotide pools is sensed by p53, which then stabilizes and accumulates causing arrest at 

the G1 checkpoint and induction of cytostasis (Linke et al., 1996; Zhang et al., 1998a). Tumor 

cells lacking functional p53 or that have other defects in the G1 checkpoint are more sensitive to 

GARFTase inhibitors. Since 50% of human cancers lack a functional G1 checkpoint, GARFTase 

drugs may be selectively active towards these tumors while protecting normal cells with 

functional p53. Moran and colleagues demonstrated that the cytotoxic effects of agents that 

target de novo purine nucleotide biosynthesis are not dependent on p53 status since 

ribonucleotide depletion prevents full activation of p53. Due to low ATP and GTP pools, kinases 

cannot phosphorylate p53 leading to hypophosphorylated and hypoacetylated forms of p53.  In 

these forms, p53 is capable of nuclear retention and binding to the p21 promoter, but remains in 

an inactive pre-initiation complex because of insufficient recruitment of chromatin-remodeling 
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complexes which prevent chromatin accessibility and transcriptional activation of the p21 gene. 

Lack of p21 induction prevents G1 arrest and allows for S-phase entrance of tumor cells; DNA 

replication in the face of low purine levels results in cytotoxicity to the cell regardless of p53 

status (Bronder and Moran, 2002; Bronder and Moran, 2003). If these findings are accurate, 

characteristic growth inhibition by antipurine antifolates is not dependent on p53 status, thus 

increasing the potential of this drug to treat many different malignancies. 

Another consideration involves the purine salvage pathway. In bone marrow 

mononuclear cells, physiologic levels of hypoxanthine inhibited de novo purine biosynthesis and 

the salvage pathway was preferentially used to synthesize purines (King et al., 1983). These 

findings may explain the low rates of de novo purine synthesis in bone marrow tissues and 

suggests that inhibitors of de novo purine synthesis will not be marrow toxic. Additionally, 

methylthioadenosine phosphorylase (MTAP) is an enzyme that releases adenine and methionine 

from methylthioadenosine formed during polyamine biosynthesis (Illei et al., 2003). Whereas 

MTAP has been reported to be abundantly expressed in normal tissues, in many solid tumors the 

MTAP gene is co-deleted with CDKN2A (encodes p16INK4A) (Illei et al., 2003). Thus, many 

solid tumors are deficient in purine salvage and functional purine salvage in normal tissues 

would theoretically protect cells from cell death caused by GARFTase inhibition, increasing 

tumor cell selectivity for GARFTase inhibitors (Bertino et al., 2011; Hori et al., 1996).  

Recently, it was found that upon purine depletion, the human de novo purine biosynthetic 

enzymes colocalize in the cytoplasm to form a multienzyme complex called the “purinosome” 

(An et al., 2008). Purinosome formation is associated with an increased rate of purine 

biosynthesis. The formation of functional multienzyme complexes may produce efficient 

substrate channels that link the 10 catalytic active sites. Purinosomes are dynamically regulated 
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by inhibition of casein kinase 2 (CK2) (An et al., 2010b) and are spatially controlled by the 

matrix of microtubule filaments (An et al., 2010a). It will be important to determine the effect of 

de novo purine synthesis inhibitors on the formation and function of the purinosome. 

Interestingly, the trifunctional MTHFD1 which synthesizes 10-formylTHF through the ATP-

dependent condensation of formate and THF is not associated with the purinosome (An et al., 

2008; An et al., 2010b). Recently, methenylTHF synthase (MTHFS), which catalyzes the 

irreversible and ATP-dependent conversion of 5-formylTHF to 5,10-methenylTHF was found to 

enhance purine biosynthesis by delivering 10-formylTHF to the purinosome in a cell cycle and 

SUMO-dependent fashion (Field et al., 2011). Furthermore, MTHFS expression has been found 

to be elevated in some tumors, which enhances de novo purine biosynthesis and confers partial 

resistance to antifolate purine synthesis inhibitors (Field et al., 2009; Field et al., 2006). Thus, 

MTHFS may be a modifier of GARFTase inhibitor efficacy and determining MTHFS expression 

in malignancies may be an important predictor of antipurine antifolate drug activity. Because of 

its importance of MTHFS in de novo purine biosynthesis, inhibitors have been designed for 

potential use in cancer therapy (Wu et al., 2009). 

1.5.3 Mulitargeted Antifolate.  

In order to meet FDA requirements of purity, efforts were made to eliminate the synthesis 

of both R and S diastereomers of DDATHF by eliminating the chirality at the 6-position of 

LMX. One strategy replaced the 5-deazapteridine ring of LMX with a pyrrolo[2,3-d]pyrimidine 

ring, resulting in LY231514 (PMX; Alimta) (Figure 1.1) (Taylor, 1993; Taylor et al., 1992). This 

structural alteration converted the sp3 center at C6 to sp2 geometry. Cell culture end-product 

reversal and enzymology experiments indicated that this compound potently inhibited TS and 

had weak inhibition of DHFR, GARFTase and AICARFTase (Figure 1.2) (Shih et al., 1997; 
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Taylor et al., 1992). PMX is rapidly transported across the cell membrane by both RFC and 

PCFT (Wang et al., 2004; Westerhof et al., 1995; Zhao et al., 2008), is highly polyglutamylated 

(best known substrate of FPGS) (Shih et al., 1997; Taylor et al., 1992) and is very sensitive to the 

cellular folate status (Taylor et al., 1992; Zhao et al., 2001b). The basis for this latter finding 

involves the inhibitory effects of physiological folates in cells on the polyglutamylation of 

antifolates at the level of FPGS (Andreassi and Moran, 2002) and at the level of drug binding 

their target enzymes. Recently, it was discovered by Moran and colleagues that AICARFTase 

inhibition by PMX causes a marked accumulation of the purine synthesis intermediate 5-amino-

4-imidazolecarboxamide ribotide (ZMP) (Racanelli et al., 2009). ZMP is an AMP mimetic that is 

an activator of AMP-activated protein kinase (AMPK). Activation of AMPK causes 

phosphorylation of AMPK target proteins involved in initiation of cap-dependent translation, 

lipid synthesis and energy metabolism. Two such proteins are the tuberous sclerosis complex 2 

(TSC2) and raptor (component of mTORC1 complex). AMPK phosphorylation in response to 

PMX exposure and ZMP accumulation leads to inhibition of mTOR signaling in colon and lung 

cancer cells (Racanelli et al., 2009; Rothbart et al., 2010). PMX was found to act synergistically 

with sorafenib (a multi-kinase inhibitor) to enhance tumor killing via the promotion of a toxic 

form of autophagy that leads to activation of the intrinsic apoptosis pathway (Bareford et al., 

2011). As mentioned in the introduction, PMX in combination with cisplatin has been approved 

for the treatment of malignant pleural mesothelioma (Hazarika et al., 2004) and NSCLC (Cohen 

et al., 2009). Other phase II clinical trials have been recently completed or are underway to test 

the efficacy of this compound in a wide range of malignancies (Adjei et al., 2010; 

Karapanagiotou et al., 2009; Katirtzoglou et al., 2010; Krug et al., 2009; Martin et al., 2009; 

Matulonis et al., 2008; Patel et al., 2009a; Patel et al., 2009b; Paz-Ares et al., 2010; Pippen et al., 
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2010; Simon et al., 2008). It will be interesting to determine why PMX has significant activity 

against lung carcinomas, which is unusual for an antifolate. 

1.5.4 Polyglutamylation of Antifolates.  

The above-mentioned antifolates with the exception of PT523 are substrates for 

polyglutamylation by FPGS.  Polyglutamation of antifolates leads to augmentation of 

pharmacological activity through their sustained inhibition of THF-dependent enzymes, 

reflecting increased affinities for target enzymes, and abilities to inhibit enzymes that are poorly 

inhibited by monoglutamate antifolate forms (Goldman and Zhao, 2002; Hughes et al., 1999; 

Mendelsohn, 1999).  For example, the crystal structure of GARFTase shows that the surface of 

the protein near the folate binding loop is either neutral or positively charged and, therefore, 

would provide a suitable surface for interaction with a polyglutamate tail. This may explain the 

increased affinity of polyglutamylated drugs such as LMX for GARFTase (Dahms et al., 2005; 

Zhang et al., 2002).  Similar explanations have been provided for other antifolates and 

intracellular targets such as TS (Allegra et al., 1985).  However, inhibition of DHFR by MTX is 

not in itself enhanced by polyglutamylation (Goldman and Matherly, 1985; Matherly et al., 

1987b).  Another important consequence of polyglutamylation involves sustained inhibition of 

intracellular targets since long chain polyglutamates of antifolates are poor substrates for influx 

or efflux transporters.  Therefore, antifolates are retained by cells at high concentrations even 

after extracellular drug levels have been reduced due to clearance (Goldman and Matherly, 1985; 

Matherly et al., 1987b).  It is interesting to note that polyglutamylation is important for 

selectivity of antifolates for tumor cells.  Polyglutamates of MTX have been reported to 

accumulate more in tumor cells than in the bone marrow or intestinal cells, such that the 

metabolic effects of antifolates in normal cells tend to be relatively transient (Fry et al., 1983; 
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Koizumi et al., 1985).  Yet, the effect on normal tissues such as myelosuppression and mucositis 

is still the dose-limiting factor in antifolate treatment. 

1.5.5 Transport as a Determinant of Selectivity and Resistance.  

Transport of antifolates by RFC, PCFT and FR is a very important determinant of drug 

activity and tumor selectivity. Since RFC is ubiquitously expressed and functional at the neutral 

pH surrounding most normal tissues, transport of antifolates by RFC into proliferating normal 

tissues is thought to be the cause of many drug-induced toxicities. The specificities of antifolates 

differ for the various folate uptake mechanisms. RFC can transport all the classic antifolates 

including MTX, AMT, PDX, RTX, LMX, and PMX with high affinities (Figure 1.2) (Matherly 

et al., 2007).  MTX can be transported by PCFT, albeit to a lower extent than RFC (Zhao et al., 

2008).  PMX has a higher affinity for PCFT than RFC at low pH and is the best known substrate 

for PCFT yet described (Zhao and Goldman, 2007). PT523 is not a transport substrate for PCFT 

(Figure 1.2) (Zhao and Goldman, 2007). As mentioned in this section, it has been observed that 

the same or better growth inhibition could be obtained from an analog that had reduced affinity 

for its enzyme target but had greater substrate affinity and therefore uptake by RFC. Examples 

include PDX compared with AMT, and RTX compared with CB3717. This highlights the 

importance of concentrative antifolate uptake to provide sufficient (unbound) intracellular drug 

to sustain maximal inhibition of enzyme targets and for the synthesis of polyglutamates. The 

significance of transport-mediated uptake can also be demonstrated in cases of antifolate 

resistance where loss of RFC expression causes cells to become resistant to antifolates that 

depend on RFC for cellular uptake (Assaraf, 2007; Matherly et al., 2007; Zhao and Goldman, 

2003).  
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Impaired RFC function is an important mechanism of resistance to MTX (Hill et al., 

1979; Niethammer and Jackson, 1975; Sirotnak et al., 1968; Sirotnak et al., 1981) and other 

antifolates in vitro, and it may be associated with clinical resistance to this agent in the treatment 

of ALL (Belkov et al., 1999; Gorlick et al., 1997; Levy et al., 2003; Zhang et al., 1998b), 

osteosarcoma (Guo et al., 1999; Ifergan et al., 2003; Yang et al., 2003) and colorectal cancer 

(Wettergren et al., 2005), as well as primary central nervous system lymphoma (Ferreri et al., 

2004). Impaired transport of antifolates into tumor cells in preclinical and clinical studies has 

been associated with quantitative and/or qualitative alterations in RFC expression and/or 

transport activity (Assaraf, 2007; Matherly et al., 2007; Zhao and Goldman, 2003). RFC function 

can be lost by methylation of a CpG island in the promoter between exons B and A (Worm et al., 

2001), genomic deletion (Chattopadhyay et al., 2006; Ding et al., 2001; Zhao et al., 2004c), 

single point mutations within the open reading frame, mutation of the ATG start codon, 

insertions and frameshifts, truncated proteins, deletions, mutations resulting in RFC instability, 

and loss of RFC alleles due to translocations (Assaraf, 2007; Ding et al., 2001; Matherly et al., 

2007; Rothem et al., 2002; Wong et al., 1999; Zhao and Goldman, 2003; Zhao et al., 1999). 

Treatment of a L1210 murine leukemia cell line with mutagen (ethylmethanesulfonate) followed 

by selection with MTX using 5-CHO-THF in the growth medium produced a spectrum of RFC 

mutations (Assaraf, 2007; Zhao and Goldman, 2003; Zhao et al., 1999). Two RFC point 

mutations (V104M and S46N) that led to MTX resistance but preserved PMX and LMX growth 

inhibition were identified. The first mutation, V104M in the third TMD of RFC had markedly 

impaired transport of MTX and 5-CHO-THF. Despite the fact that the cellular THF-cofactor 

pool was substantially decreased, growth was sustained, consistent with the low levels of folate 

required for normal growth (Zhao et al., 2000b). Cells with this mutation had collateral 
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sensitivity to LMX due to partial maintenance of LMX transport and contraction of the folate 

pools. A second mutation, S46N did not alter the influx Kt for MTX and the natural folates (Zhao 

et al., 1998). Rather, it produced a marked (40-fold) decrease in the Vmax for MTX but a lesser 

(~7–8-fold) decrease in the Vmax for 5-CHO-THF. Sensitivity to PMX was partially preserved 

even though the THF-cofactor pools were similar to cells with wild-type RFC (Zhao et al., 

2000a). The S46N mutation has also been identified in osteosarcoma patient samples from 

patients treated with MTX (Yang et al., 2003) and is therefore a clinically relevant mutation. 

Clinically, complete loss or functional alterations in RFC are rare since tumor cells need RFC-

mediated transport of reduced folates to maintain tumor growth; therefore most clinically 

occurring point mutations are similar to S46NN which have marked loss of carrier affinity and/or 

mobility towards MTX, while preserving THF cofactor transport. Similarly, reductions in RFC 

expression are observed; for example approximately 65% of osteosarcoma samples have 

decreased RFC expression at biopsy and 50% have reduced RFC expression in recurrent or 

metastatic disease (Guo et al., 1999). It has been shown that reduced RFC expression can be 

caused by CpG island promoter hypermethylation and transcriptional silencing due to loss of 

function of transcription factors that regulate the expression of RFC (Worm et al., 2001). 

In addition to impaired transport, antifolate resistance can arise from reduced 

polyglutamylation (Drake et al., 1996; Li et al., 1992; Liani et al., 2003; Mauritz et al., 2002; 

McCloskey et al., 1991; McGuire and Russell, 1998; Pizzorno et al., 1989; Pizzorno et al., 1988; 

Pizzorno et al., 1995; Zhao et al., 2000c), decreased affinity of the drug for its folate dependent 

intracellular target due to mutation (Albrecht et al., 1972; Flintoff and Essani, 1980; Goldie et al., 

1980; Haber et al., 1981; Jackson et al., 1976; McIvor and Simonsen, 1990; Melera et al., 1984; 

Melera et al., 1988; Miyachi et al., 1995; Srimatkandada et al., 1989), increased expression of the 
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enzyme target so that more drug is needed for the same level of inhibition (eg. DHFR (Alt et al., 

1978; Dolnick et al., 1979; Horns et al., 1984; Jackson and Harrap, 1973; Mini et al., 1985; 

Nunberg et al., 1978; Trent et al., 1984; White and Goldman, 1981) and TS (Drake et al., 1996; 

Freemantle et al., 1995; Jackman et al., 1995; Kitchens et al., 1999; O'Connor et al., 1992; 

Sigmond et al., 2003; Tong et al., 1998; Wang et al., 2001a)) and increased expression and 

function of high capacity efflux pumps, such as MRPs that remove the antifolate from cells 

(Assaraf, 2006). Many of the antifolates that came after AMT and MTX were designed in an 

effort to reduce toxicity observed clinically, increase tumor selectivity and to circumvent some of 

the antifolate resistance mechanisms. This dissertation will highlight drug discovery efforts to 

find novel antifolates that are selective for PCFT-mediated uptake and that inhibit GARFTase 

and de novo purine nucleotide synthesis as a way to avoid selectivity and resistance problems. 

These compounds will also be tested in cells that are MTX resistant due to RFC loss to 

determine the impact of RFC function on antifolates that depend on PCFT for uptake. 

1.6 Hijacking the Acidic Tumor Microenvironment for Solid Tumor Targetin g. 

To maintain their rapid growth and proliferation, cancer cells have a higher need for 

energy and for biosynthesis of nucleotides than normal differentiated cells. This increased 

biosynthetic demand can be, in part, met by an altered metabolic program known as the Warburg 

effect or aerobic glycolysis in which cancer cells become highly glycolytic even in the presence 

of normal oxygen tension (Lunt and Vander Heiden, 2011). To avoid intracellular acidification, 

glycolytically-produced acid must be extruded from cells. This is achieved by increased 

expression and/or function of plasma membrane ion pumps and transporters such as H+-ATPases 

or vacuolar ATPases (Hinton et al., 2009; Martinez-Zaguilan et al., 1993; Sennoune et al., 2004), 

the Na+/H+ exchanger (NHE1) of the SLA9A family (Chiang et al., 2008; Kumar et al., 2009; 
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McLean et al., 2000; Miraglia et al., 2005), the monocarboxylate-H+ efflux symporter (MCT1 

and MCT4) of the SLC9A family (Chiche et al., 2012; Kennedy and Dewhirst, 2010; Pinheiro et 

al., 2008a; Pinheiro et al., 2008b; Pinheiro et al., 2010), and the carbonic anhydrases CAIX and 

CAXII (Chiche et al., 2009; Ilie et al., 2011; Loncaster et al., 2001; Swietach et al., 2009; 

Wykoff et al., 2000), the Cl-/HCO3- exchanger (CBE) (Alper, 2009) and Na+/HCO3
-

cotransporter (NBC) (Boron et al., 2009). The increased activities of these transporters cause 

reversal of the normal intra-extracellular pH gradients, so that cancer cells produce significant 

acidification of the extracellular environment (acidic tumor microenvironment). Extracellular pH 

in tumor cells can be as low as ~6.7-7.1, while they maintain a normal or slightly alkaline 

intracellular pH of ≥7.4. This is in comparison to normal differentiated adult cells which 

maintain an intracellular pH of ~7.2 and an extracellular pH of ~7.4 (Busco et al., 2010; 

Gallagher et al., 2008; Gillies et al., 2002; Stuwe et al., 2007; Webb et al., 2011). Acidification 

of the tumor environment is exacerbated by limited removal of glycolytic waste products due to 

poor perfusion, which is affected by tumor size and abnormal vascularization (Webb et al., 

2011). The resultant H+- electrochemical gradient favors passive weak acid uptake by pH 

partition and, importantly, acts as a driving force for H+-coupled solute transport at the cancer 

cell plasma membrane. Additionally, the decrease in extracellular pH increases the affinity and 

broadens substrate specificity of pH-dependent transporters (Leuthold et al., 2009; Nozawa et al., 

2004; Qiu et al., 2006; Rubio-Aliaga et al., 2003). 

The targeted drug strategy that uses selective uptake of therapeutics into the tumor cell by 

H+-coupled transporters is novel but not unprecedented (Anderson and Thwaites, 2010). 

Aberrant H+-coupled di/tripeptide (PepT1 and PepT2) transport has been characterized in tumor 

cells and overexpression may be useful for targeting a number of experimental and clinical 
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anticancer substrates to tumor cells, including the photodynamic therapy and imaging agent 5-

aminolevulinic acid (Anderson et al., 2010) and the aminopeptidase inhibitor bestatin (Nakanishi 

et al., 2000). Prodrugs of floxuridine and cytarabine may also be transported by PepT1 (Sun et 

al., 2009). Additionally, the H+-coupled amino acid transporter PAT1 and the pH dependent 

OATPs could also be used for mediating uptake of anti-cancer drugs. PAT1 can also transport 5-

aminolevulinic acid (Anderson et al., 2010) and L-cycloserine (Anderson et al., 2004). 

Prominent low-pH transport activities have been observed for several organic anion transporting 

polypeptides (OATPs) (Leuthold et al., 2009); of these, only OATP1A2 is known to have MTX 

transport activity at low pH (Badagnani et al., 2006). Recently, OATP2B1 has been established 

as a low-affinity, but highly selective, low pH antifolate transporter demonstrating the critical 

role that pH, substrate, and substrate concentration can play in identifying the spectrum of 

activities of a transporter (Visentin et al., 2012).  

This dissertation will focus on PCFT-mediated uptake of novel antifolates into the tumor 

cell by harnessing the proton gradient that exists in the tumor microenvironment as a therapeutic 

strategy. 
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CHAPTER 2 
 

THE HUMAN PROTON-COUPLED FOLATE TRANSPORTER IS EXPRESSED AND 
FUNCTIONAL IN HUMAN SOLID TUMORS 

 
2.1 Introduction.  

The anionic nature of folates and antifolates precludes their diffusion across biological 

membranes. Therefore, three genetically distinct and functionally diverse transport systems are 

in place to facilitate uptake of these molecules into the cells of peripheral tissues. Two 

facilitative transporters, RFC and the newly discovered PCFT and two FR isoforms (α and β) 

mediate this uptake.  

RFC is ubiquitously expressed in both normal and tumor tissues, with characteristic patterns 

of localization in intestine, hepatocytes, renal epithelial cells and choroid plexus, which suggest 

specialized roles in these tissues for folate homeostasis (Matherly and Goldman, 2003; Matherly 

et al., 2007; Zhao et al., 2009a). Indeed, given its widespread tissue expression, RFC is 

considered the major transport system for folates in mammalian cells and tissues. 

FRα is predominantly expressed on the apical (luminal) surface of polarized epithelial 

cells where it is not in contact with circulating folate (Chancy et al., 2000). FRα is expressed in 

epithelial cells of the kidney, choroid plexus, retina, uterus, and placenta (Elnakat and Ratnam, 

2004).  Malignant tissue expression includes malignant pleural mesothelioma (Bueno et al., 

2001) and adenocarcinomas of the cervix, uterus, and ovary (Elnakat and Ratnam, 2004). 

Importantly, FRα is overexpressed in up to 90% of ovarian cancers (Toffoli et al., 1997; Wu et 

al., 1999). Close associations were reported between FRα expression levels with grade and 

differentiation status of ovarian tumors (Buist et al., 1995; Garin-Chesa et al., 1993; Veggian et 

al., 1989; Wu et al., 1999). FRβ is expressed in the thymus, spleen, placenta, and CD34+ human 

hematopoietic cells and is needed for normal myelopoiesis (Pan et al., 2002; Reddy et al., 1999). 
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Both acute and chronic myelogenous leukemias express FRβ (Kamen and Smith, 2004; Salazar 

and Ratnam, 2007).  

Human PCFT transcripts were reported to be highly expressed along the proximal 

jejunum, duodenum, kidney, liver, placenta, spleen and choroid plexus and, to a lesser extent, in 

the brain, testis and lung (Inoue et al., 2008; Qiu et al., 2006). Mouse PCFT transcripts were 

highly expressed in the duodenum, proximal jejunum, kidney, liver and to a lesser extent in the 

brain, skin, lung, stomach, and testis. Mouse PCFT protein was found on the apical brush-border 

membrane of the proximal jejunum and duodenum (Qiu et al., 2007). Direct evidence that this 

transporter is responsible for low-pH transport and intestinal folate absorption came from the 

discovery that homozygous mutations in the coding region of the PCFT gene leads to the rare 

autosomal recessive disorder HFM (Atabay et al., 2010; Borzutzky et al., 2009; Geller et al., 

2002; Lasry et al., 2008; Mahadeo et al., 2010; Mahadeo et al., 2011; Meyer et al., 2010; Min et 

al., 2008; Qiu et al., 2006; Shin et al., 2011; Shin et al., 2010; Zhao et al., 2007). Loss of PCFT 

function leads to impaired intestinal folate absorption, resulting in severe folate deficiency, and 

impaired transport of folates across the choroid plexus into the central nervous system. 

Importantly this establishes the critical physiological functions of PCFT folate transport (Zhao et 

al., 2009a).  

The discovery of PCFT may provide a novel transport route for antifolates into tumor 

cells. The ability of PCFT to utilize a proton gradient across the cell membrane to transport 

antifolates intracellularly may provide a new mechanism for tumor targeting, based on the acidic 

tumor microenvironments of solid tumors. To determine whether this approach is plausible, the 

therapeutic potential of PCFT as a means of selectively delivering antifolates into the tumor cell 

must be established. The expression of PCFT and how it compares to RFC and FR expression in 
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human malignancies is largely unestablished. In solid tumor cells, previous results have shown 

that MTX influx at pH 5.5 was equal to, or greater than, influx at pH 7.4 in 29 of 32 cell lines, 

including cell lines from the NCI60 cell line panel (Zhao et al., 2004b). However, it has yet to be 

established what the levels of PCFT are in these and other clinically relevant solid tumor cell 

lines. Further patterns of PCFT expression in tumor specimens have not been previously 

established. This chapter will focus on determining the level of PCFT expression in a wide range 

of solid tumor and leukemia cell lines. The expression of PCFT will be compared in tumor and 

normal tissues at the RNA, protein, and functional levels. Patterns of PCFT expression in both 

normal and tumor tissue will be compared to those for RFC and FR.  

The findings presented in this chapter indeed establish that PCFT is expressed and 

functional in solid tumors and has restricted expression in normal tissues. Thus, PCFT could be 

used in conjunction with the acidic tumor microenvironment to efficiently deliver cytotoxic 

antifolates into the tumor cell. 

2.2 Materials and Methods. 

2.2.1 Chemicals and Reagents.  

  [3’,5’,7-3H]MTX (20 Ci/mmol) was purchased from Moravek Biochemicals (Brea, CA). 

Both labeled and unlabeled MTX were purified by HPLC prior to use (Fry et al., 1982). Other 

chemicals were obtained from commercial sources in the highest available purities. 

2.2.2 Cell Culture. 

The sources and cell culture conditions for the panel of human solid tumor and leukemia 

cell lines used for real-time RT-PCR assays of transcript levels for RFC and PCFT are 

summarized in Table 2.1. HeLa R1-11-RFC6 and R1-11-PCFT4 cells were derived from RFC- 

and PCFT-null R1-11 cells by stable transfection with HA-tagged pZeoSV2(+)-RFC and 
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pZeoSV2(+)-PCFT constructs, respectively (Zhao et al., 2008), and were gifts of Dr. I. David 

Goldman (Albert Einstein School of Medicine, Bronx, NY).  

2.2.3 Real-time RT-PCR Analysis of RFC and PCFT Transcripts. 

2.2.3.1 Origene cDNA Arrays of Tumor and Normal Tissue.   

To expand the transporter expression profiles in normal and malignant human tissues we 

measured the levels of PCFT and RFC transcripts in a wide range of human normal and tumor 

tissues. We used arrays of normalized cDNAs from either 48 pathologist-verified normal tissues 

(e.g., adrenal, small intestine, liver, lung, ovary, etc.; “Human Major Tissue qPCR Array”, 

Origene HMRT102) or 96 normalized cDNAs from pathologist-verified solid tumors and paired 

normal tissues (“TissueScan Oncology qPCR Array”, Origene CSRT101). Real-time RT-PCR 

was performed in a 384 well plate format on a Roche LightCycler 480 using Universal Probes 

(Roche, Indianapolis, IN) and gene-specific primers. Details are included in Table 2.1.  

Transcript levels for PCFT and RFC genes were normalized to those for glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and transcripts were quantified using the delta Ct method.  

2.2.3.2 Solid tumor and Leukemia Cell Lines.   

RNAs were isolated from a large variety of human cell lines including solid tumors 

(n=57) and leukemias (n=27) (Table 2.2) using TRIzol reagent (Invitrogen).  cDNAs were 

synthesized using the Superscript reverse transcriptase III kit (Invitrogen)  and purified with the 

QIAquick PCR Purification Kit (Qiagen). PCFT, RFC and FRα transcript levels were measured 

by real-time RT-PCR, which was performed using Universal Probes (Roche, Indianapolis, IN) 

and gene-specific primers. Details are included in Table 2.1. Transcripts were normalized to 

GAPDH and quantified by constructing external standard curves for each gene of interest. 

Standard curves were made by using serial dilutions of linearized templates, prepared by  
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Table 2.2 Leukemia and solid tumor cell lines used for real-time PCR. 
CELL LINE DISEASE ORIGIN SOURCE 

U937 AML Macrophage? ATCC 
CTS AML M1 Peripheral blood Fuse, A. 

Kasumi-1 AML M2 Peripheral blood ATCC 
HL60 AML M2 Peripheral blood ATCC 

MV4-11 AML M5 Peripheral blood ATCC 
THP-1 AML M5 Peripheral blood ATCC 

AML-193 AML M5 Peripheral blood ATCC 
KG-1 AML M6 Bone marrow ATCC 
KG-1a AML M6 Bone marrow ATCC 
K5621 CML Bone marrow ATCC 
CMS AML M7 Peripheral blood Fuse, A. 

MEG-01 CML Bone marrow ATCC 
CMK DS AML M7 Peripheral blood DSMZ 
CMY DS AML M7 Bone marrow Fuse, A. 
697 BP-ALL Bone marrow DSMZ 

Nalm6 BP-ALL Peripheral blood DSMZ 
Uoc B4 BP-ALL CSF Findley, H. 
REH BP-ALL Unknown ATCC 

CCRF-CEM1,2 T-cell ALL Peripheral blood ATCC 
MOLT41 T-cell ALL Peripheral blood DSMZ 
MOLT3 T-cell ALL Peripheral blood DSMZ 

HPB-ALL T-cell ALL Peripheral blood DSMZ 
TALL-1 T-cell ALL Bone marrow DSMZ 
DND 41 T-cell ALL Peripheral blood DSMZ 
ALL-SIL T-cell ALL Peripheral blood DSMZ 

Jurkat T-cell ALL Peripheral blood ATCC 
TE-85 Osteosarcoma Bone Peterson, W.D. 

HTB166 Ewing's sarcoma Bone ATCC 
MCF-71,2 Adenocarcinoma Breast ATCC 

MDA-MB2311,2 Adenocarcinoma Breast ATCC 
MDA-MB4351,2 Adenocarcinoma/Melanoma Breast/Skin? ATCC 

T-47D1 Ductal carcinoma Breast ATCC 
KB Adenocarcinoma Cervix ATCC 

HeLa2 Adenocarcinoma Cervix ATCC 
HCT-1161,2 Colorectal adenocarcinoma Colon ATCC 
SW-6201 Colorectal adenocarcinoma Colon ATCC 
HCT151,2 Colorectal adenocarcinoma Colon ATCC 
Caco-2 Colorectal adenocarcinoma Colon ATCC 
BCPC-3 Adenocarcinoma Pancreas ATCC 
UCVA-1 Adenocarcinoma Pancreas Peterson, W.D. 
786-O1,2 Renal cell adenocarcinoma Kidney ATCC 
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ACHN1,2 Renal cell adenocarcinoma Kidney ATCC 
IGROV-11 Adenocarcinoma Ovary Ratnam, M. 

OVCAR-31,2 Adenocarcinoma Ovary ATCC 
SKOV-31 Adenocarcinoma Ovary ATCC 
HepG22 Hepatocellular carcinoma Liver ATCC 
Hep3B2 Hepatocellular carcinoma Liver ATCC 

Y79 Retinoblastoma Eye, retina ATCC 
SK-MEL51,2 Melanoma Skin ATCC 
SK-MEL-281 Melanoma Skin ATCC 

HTB139 Rabdomyosarcoma Muscle Peterson, W.D. 
SK-N-SH Neuroblastoma Brain ATCC 
SK-N-BE Neuroblastoma Brain ATCC 
SK-N-MC Neuroepithelioma Supraorbital area ATCC 
HT1080 Fibrosarcoma Connective tissue ATCC 
PC-31,2 Adenocarcinoma Prostate ATCC 

DU-1451,2 Carcinoma Prostate ATCC 

H1650 
Bronchoalveolar 
adenocarcinoma 

lung ATCC 

H2122 Adenocarcinoma/NSCLC lung ATCC 
H2030 Adenocarcinoma/NSCLC lung ATCC 
H1573 Adenocarcinoma lung ATCC 

H1781 
Bronchoalveolar 
adenocarcinoma 

lung ATCC 

H3255 Adenocarcinoma/NSCLC lung Gazdar, A.F. 
A5491 Carcinoma lung ATCC 

CRL5807 
Bronchioalveolar carcinoma 

/NSCLC 
lung 

 
ATCC 

CRL5872 Adenocarcinoma/NSCLC lung ATCC 
CRL58101,2 Adenocarcinoma/NSCLC lung ATCC 
CRL58001,2 Adenocarcinoma/NSCLC lung ATCC 

H596 Adenosquamous carcinoma Lung ATCC 
NCI-H4601,2 Large-cell carcinoma Lung ATCC 

H69 SCLC Lung ATCC 
H446 SCLC Lung ATCC 
H2261 Pleural mesothelioma Pleura ATCC 
H2373 Pleural mesothelioma Pleura Pass, H.I. 
H2452 Pleural mesothelioma Pleura Pass, H.I. 
H2461 Pleural mesothelioma Pleura Pass, H.I. 
H2591 Pleural mesothelioma Pleura Pass, H.I. 
H2595 Pleural mesothelioma Pleura Pass, H.I. 

H2714/HP-1 Pleural mesothelioma Effusion Pass, H.I. 
1 – Cell lines of NCI60 cell line panel 
2 – Cell lines used in the report of (Zhao et al., 2004b)  
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amplification from suitable cDNA templates, subcloned into a TA-cloning vector (PCR-Topo; 

Invitrogen), and restriction digested. 

2.2.4 Determination of PCFT Protein Expression Levels. 

To determine whether transcript levels correlate with increased protein levels, PCFT and 

RFC protein levels in solid tumor cell lines and tissues were measured.  Our laboratory has made 

human PCFT and RFC-specific (Hou et al., 2011; Wong et al., 1998; Wong et al., 1999) 

polyclonal antibodies specific for a carboxyl-termini PCFT peptide (CKADPHLEFQQFPQSP) 

or RFC (PEDSLGAVGPASLEQRQS) peptide.  For PCFT, polyclonal antibody services at 

Invitrogen injected the peptide into rabbits with a hapten-conjugated carrier, after which they 

collected the bleeds and tested antibody specificity by ELISA.  The serum was purified using a 

peptide affinity column synthesized from Affi-Gel 10 (BioRad, Richmond, CA) and the specific 

peptide, using pH 2.5 sodium citrate to elute the antibody.  Specificity was validated by peptide 

competition in both western blot and immunohistochemistry experiments.   

2.2.4.1 Western Blot Analysis of Solid Tumor Cell Lines.   

  For characterizing PCFT protein expression in solid tumor cell lines, sucrose-enriched 

plasma membranes were prepared by differential centrifugation. Briefly, cells were suspended in 

10 mM Tris-HCl, pH 7.0, containing X1 protease inhibitor cocktail tablets (Roche, Indianapolis, 

IN), and disrupted with a Parr nitrogen cavitator (500 psi, 20 min).  The homogenate was spun at 

600 x g to remove cell debris and nuclei; the supernatant was centrifuged at 200,000 x g in a 

Beckman 70Ti rotor for 90 min.  The membrane pellet was suspended in 600 µL of 10 mM Tris-

HCl, pH 7.0, containing the protease inhibitor cocktail, and layered on a discontinuous sucrose 

gradient (2 mL 60% and 2.5 mL 20% sucrose in a SW55Ti rotor).  Centrifugation was for l h at 

58,000 x g.  The 20%-60% interface containing plasma membranes was removed, diluted 
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approximately 10-fold with 10 mM Tris-HCl pH 7.0 (containing proteolytic inhibitors), and 

again centrifuged at 200,000 x g for 60 min to pellet the membranes (Matherly et al., 1991). 

Proteins were quantified with Folin-phenol reagent (Lowry et al., 1951). Membrane proteins 

were electrophoresed on 7.5% polyacrylamide gels in the presence of SDS (Laemmli, 1970) and 

electroblotted onto polyvinylidene difluoride membranes (PVDF) (Pierce, Rockford, IL) 

(Matsudaira, 1987). Immunoreactive PCFT and RFC were detected on membranes with the 

PCFT or RFC-specific polyclonal antibodies described above. An IRDye800CW-conjugated 

goat anti-rabbit IgG (Rockland, Gilbertsville, PA) was used as a secondary antibody, and the 

membranes were scanned with the Odyssey® Imaging System. Densitometry used Odyssey 

software (v 1.2) for quantitating levels of PCFT protein. PCFT levels were normalized to Na+/K+ 

ATPase protein levels (mouse antibody from Novus Biologicals, Littleton, CO) on Westerns.  

2.2.4.2 Immunohistochemistry of Tumor and Normal Tissue Panels.   

  PCFT and RFC-specific peptide antibodies were used with immunohistochemistry to 

profile tissue/cellular distributions and transporter levels in commercially available paraffin 

tissue panels (US Biomax) of normal (FDA995) and malignant tissues (BCN961) from ovary, 

breast, prostate, liver, etc. Specificity was established with normal IgG and (as warranted) the 

addition of blocking peptide to the antibody mix. Panels included malignant tissues from a wide 

range of tumor types and normal tissue types including some samples with established 

expression of PCFT such as the duodenum, kidney, and liver.  Immunohistochemistry was 

performed in collaboration with Mr. Larry Tait from the Karmanos Cancer Institute Imaging 

Core Facility.  

2.2.5 Transport of [3H]MTX in Solid Tumor Cell Lines.    
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  To determine the function of PCFT and RFC in the solid tumor cell lines, transport of 0.5 

µM [3H]MTX was assayed in cell monolayers over 5 min at 37°C in 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES)-buffered saline (20 mM HEPES, 140 mM NaCl, 5 mM 

KCl, 2 mM MgCl2, and 5 mM glucose) at pH 7.2 to determine RFC-mediated transport, or in 4-

morphilinopropane sulfonic (MES)-buffered saline  (20 mM MES, 140 mM NaCl, 5 mM KCl, 2 

mM MgCl2, and 5 mM glucose) at pH 5.5 for determining transport by PCFT (Zhao et al., 

2004b).  Some transport experiments were performed in the presence of 20 nM folic acid to rule 

out uptake by the folate receptor. At the end of the incubations, transport was quenched with ice-

cold Dulbecco’s phosphate-buffered saline (DPBS), cells were washed 3 times with ice-cold 

DPBS, and cellular proteins were solubilized with 0.5 N NaOH. Levels of drug uptake were 

expressed as pmol/mg protein, calculated from direct measurements of radioactivity and protein 

contents of cell homogenates. Radioactivity was measured with a scintillation counter (Model 

LS6500; Beckman-Coulter, Fullerton, CA) and proteins were quantified using Folin-phenol 

reagent (Lowry et al., 1951). MTX was frequently used to characterize RFC and PCFT-mediated 

transport because it is commercially available, it is not metabolized over short intervals, and 

because of the ease and accuracy of influx determinations and distinguishing between free and 

tightly bound drugs within cells. 

2.3 Results 

2.3.1 Expression of RFC and PCFT in Human Normal and Tumor Tissue.  

In order to determine the potential of targeting PCFT for drug uptake it was important to 

establish the expression of PCFT at both the transcript and protein levels in human normal and 

tumor tissues. For normal tissues, transcript levels for RFC and PCFT were measured by  real-

time RT-PCR of normalized Origene cDNA arrays from 48 pathologist-verified normal human 
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tissues. PCFT is expressed in most normal tissues, albeit at low levels. We measured high levels 

of PCFT mRNA in highly metabolic tissues such as the duodenum, kidney, liver, and the adrenal 

and pituitary glands (Figure 2.1, Panel A). This corroborated expression patterns observed in 

mouse tissues (Qiu et al., 2006). For RFC, expression was ubiquitous with the highest levels in 

tissues of the liver, lung, placenta, ovary and retina, and low in the heart and muscle. These 

findings were similar to mRNA expression patterns described by Whetstine et al. (2002a) in 

human tissues measured by northern blotting. The levels of PCFT at the transcript level were 

validated by immunohistochemical detection of PCFT protein using US Biomax tissue arrays of 

FDA approved human normal tissue and a polyclonal PCFT antibody. As demonstrated by real-

time RT-PCR, the levels of PCFT protein were high in the duodenum (Figure 2.1, Panel B) and 

kidney (Figure 2.1, Panel C). Staining was specific since the signal could be competed out with a 

PCFT-specific peptide (data not shown) or when the secondary antibody was not included (data 

not shown). Overall, PCFT transcript and protein expression is more limited than RFC 

expression in normal tissues. For tumor tissues, RFC and PCFT transcripts were measured by 

real-time RT-PCR of normalized Origene cDNA arrays from multiple human primary tumors. 

Significant, albeit variable levels of PCFT transcripts were detected in all tumors tested. The 

expression pattern of PCFT in tumor tissue was similar to levels found in normal tissue, with 

liver tumors showing the highest levels (Figure 2.2, Panel A).  Expression of RFC was high in 

the liver and lung, similar to the normal tissue expression pattern. Interestingly, the level of RFC 

was higher in both breast and colon tumors compared to normal tissue (Figure 2.2, Panel B). The 

continued clinical use of classical antifolates, which are substrates for RFC-mediated uptake, 

including MTX in breast cancer and RTX in colon cancer, may reflect the tumor-specific 

expression of RFC in these tissues. Patterns of transporter expression in primary tumors were 



www.manaraa.com

 

 

58

 
Figure 2.1 PCFT and RFC expression in human normal tissues. PCFT (Panel A) and RFC 
(Panel D) transcripts were measured using an Origene cDNA array of 48 pathologist-verified 
human normal tissue by real-time RT-PCR from total RNAs using a Roche480 Light-cycler and 
gene specific Universal probes and primers (Table 2.1). Transcript levels were normalized to 
GAPDH transcripts. Immunohistochemistry of US Biomax tissue arrays of human small intestine 
(Panel B) and kidney (Panel C) normal tissues stained with a polyclonal PCFT antibody. 
Experimental details are provided in the Materials and Methods. 
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Figure 2.2 PCFT and RFC expression in human normal and tumor tissues. PCFT (Panel A) 
and RFC (Panel B) transcripts were measured in an Origene cDNA array of pathologist-verified, 
breast, colon, kidney, liver, lung, ovary, prostate and thyroid human tumor tissue (n=6) cDNAs 
compared to paired normal tissues from the same patient (n=3) by real-time RT-PCR from total 
RNAs using a Roche480 Light-cycler and gene specific Universal probes and primers (Table 
2.1). Transcript levels were normalized to β-actin transcripts. Immunohistochemistry of US 
Biomax tissue arrays of human ovarian (Panel C) and liver (Panel D) tumors stained with a 
polyclonal PCFT antibody. Panel E, the ratio of PCFT to RFC transcript levels. Experimental 
details are provided in the Materials and Methods. 
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confirmed by immunohistochemistry of tissue arrays probed with transporter-specific antibodies. 

Tissue arrays contained multiple cancer and adjacent tissues, single core per case, 16 types of 

common organs and were pathologically confirmed (bladder, brain, breast, colon, esophagus, 

kidney, liver, lung, lymph node, ovary, pancreas, prostate, rectum, skin, stomach and uterine 

cervix). Similar to real-time RT-PCR, the levels of PCFT protein were high in the ovarian and 

liver tumors (Figure 2.2, Panel C and D; respectively) compared to IgG control (data not shown), 

again reflecting PCFT transcript levels obtained from real-time RT-PCR. For the most part, 

PCFT levels are similar in both normal and tumor tissues at both the transcript and protein level.  

The ratios of PCFT to RFC transcript expression in human normal and tumor tissues were 

determined. Thyroid, ovarian and liver tumors had higher tumor PCFT/RFC ratios compared to 

normal tissues (Figure 2.2, Panel E). The ratio of PCFT to RFC expression and function may 

represent a more important indicator of which tumor types will benefit from PCFT-selective 

antifolates. Functional RFC could transport reduced folates into the cell which would compete 

with the antifolate for binding to folate-dependent enzymes, thereby reducing the cytotoxicity of 

antifolates that depend on PCFT for cellular uptake (see Chapter 5).   

2.3.2 Expression and Function of RFC and PCFT in Human Solid Tumor and Leukemia 

Cell Lines.  

Following reports of a low pH transport activity in solid tumor cells lines and to find a 

solid tumor cell line model for our PCFT-targeted therapeutics, we turned our attention to 

establishing an expression profile for PCFT compared to RFC and FRs in a number of cell lines 

derived from human solid tumors and leukemias (Table 2.2). Transcript levels for PCFT along 

with RFC and FRs α and β were measured by real-time RT-PCR and normalized to levels of 

GAPDH. Our results demonstrated significant levels of PCFT transcripts in the majority of 
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human solid tumor cell lines of different origins (e.g., breast, prostate, ovarian, etc.) (Figure 2.3, 

Panel A), and uniformly low PCFT transcript levels in human leukemias, including both ALL 

and AML (Figure 2.3, Panel C). PCFT levels were highest in Caco-2 (colorectal) SKOV3 

(ovarian), HepG2 (hepatoma), HeLa (cervical), and T47D (breast) cancer cells. RFC transcripts 

were detected in all leukemia and solid tumor cell lines with the exception of MDA-MB-231 

breast cancer cells (reported to express very low RFC (Worm et al., 2001)) (Figure 2.3, Panel B 

and D). High levels of FRα were detected in a small subset of ovarian, cervical, and breast 

cancer cell lines and modest FRα levels were measured in ALL (mostly T-cell) sublines (data not 

shown). FRβ transcripts were consistently low-to-undetectable in both solid tumors and 

leukemias, with the highest levels restricted to a small number of AML and T-cell ALLs (data 

not shown). The levels of human PCFT, RFC and FR transcripts in solid tumor and leukemia cell 

lines were published (Kugel Desmoulin et al., 2011).  Real-time RT-PCR was repeated with 

SYBR green and gene-specific primers (Table 2.1), (experimental details are the same as in 

section 5.2.6) and identical results were obtained. 

The level of PCFT and RFC protein expression was validated for ten solid tumor cell 

lines (HepG2, Hep3B, H596, CRL5810, H2595, HCT15, Caco-2, DU145, MDA-MB 321, SK-

MEL5) and four control HeLa cell lines (R1-11-mock (no functional PCFT or RFC), R1-11-

PCFT4 (R1-11-mock stably transfected with PCFT), HeLa (functional PCFT and RFC), R5 

(HeLa cells that express PCFT but not RFC)) by isolating membrane fractions through 

differential centrifugation and sucrose gradients, followed by immunoblotting with PCFT and 

RFC-specific polyclonal antibodies. Relative PCFT and RFC protein levels paralleled levels of 

PCFT (Figure 2.4, Panel A) and RFC (Figure 2.4, Panel B) transcripts, as detected by real-time 

RT-PCR. There were some differences in protein sizes, which likely reflect post-translational  
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Figure 2.3 PCFT and RFC transcript expression in human solid tumor and leukemia cell 
lines. PCFT (Panel A and C) and RFC (Panel B and D) transcripts were measured in 53 human 
solid tumor (Panels A and B) and 27 leukemia (Panels C and D) cell lines by real-time RT-PCR 
from total RNAs using a Roche480 Light-cycler and gene specific Universal probes and primers 
(Table 2.1). Transcript levels were normalized to GAPDH transcripts. Experimental details are 
provided in the Materials and Methods. A table summarizing the characteristics of the 53 tumor 
and 27 leukemia cell lines is also included in Table 2.2. 
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Figure 2.4 PCFT and RFC protein expression in human solid tumor cell lines. PCFT (Panel 
A) and RFC (Panel B). Pure membrane fractions were isolated using a Parr nitrogen cavitator at 
500 psi for 20 min, differential centrifugation and sucrose gradients. Membrane proteins (25 µg) 
were electrophoresed on 7.5% denaturing polyacrylamide gels and immunoblotted with 
polyclonal PCFT and RFC antibodies. Na+/K+ ATPase protein levels were used as loading 
controls. The characteristics of the 14 tumor cell lines are included in Table 2.2. Non-specific 
(NS) band. 
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modifications (e.g., glycosylation (Unal et al., 2008; Wong et al., 1998)). Finally, functional 

validation of transporter expression in solid tumor cell lines was determined by transport of 

[3H]MTX (Figure 2.5) at pH 5.5 for PCFT (Panel A), and at pH 7.2 for RFC ( Panel B). Relative 

uptake of [3H]MTX somewhat paralleled transcript and protein levels for PCFT. More modest 

levels of transport were detected at pH 7.2, although the correlation with RFC protein was 

inexact. The reason for this is unclear. pH 5.5 (PCFT) to pH 7.2 (RFC) transport ratios ranged 

from ~2- to ~9-fold (Figure 2.5, Panel C), demonstrating broad spectrum and high-level PCFT to 

RFC membrane transport in clinically relevant human tumor cell lines, as previously reported 

(Zhao et al., 2004b). 

2.4 Discussion 

Our findings have established the expression patterns and pH-specific transport for PCFT 

in human solid tumor cell lines, primary tumors and normal tissues. We found that expression of 

PCFT transcripts and protein in normal tissues is more limited than for the ubiquitously 

expressed RFC, with high levels in the liver, kidney, and small intestine. In addition, a wide 

range of human solid tumor tissues and cell lines expressed PCFT transcripts and protein, and 

PCFT expression generally correlated with pH-dependent transport function. Goldman and 

colleagues measured low pH transport of MTX into human tumor cell lines (Zhao et al., 2004b). 

Our comprehensive analysis of PCFT expression and function identified PCFT as the low pH 

folate transporter responsible of MTX uptake at acid pH in solid tumor cell lines. While RFC 

protein was likewise detected in most of the tumor cell lines, transport was only modestly 

reflected in levels of RFC protein, suggesting the existence of previously unrecognized 

posttranslational regulatory mechanisms for RFC and/or an unknown non-RFC transport process 

at neutral pH. Finally, we have found the expression of PCFT to be very low in the bone marrow,  
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Figure 2.5 PCFT and RFC function in human solid tumor cell lines. Uptake of 0.5 µM 
[3H]MTX was measured at 37˚C for 5 min in cell monolayers at pH 5.5 (MES-buffered saline) 
(Panel A) or pH 7.2 (HEPES-buffered saline) (Panel B), and internalized [3H]drug was 
normalized to total protein. Panel C, the ratio of [3H]MTX uptake at pH 5.5 / pH 7.2 in WT and 
R5 HeLa cells. A table summarizing the characteristics of the 14 tumor cell lines is included in 
Table 2.2. 
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which would suggest that PCFT-targeted therapeutics may be less marrow toxic compared to 

antifolates presently in clinical use that rely on RFC-mediated uptake at neutral pH. It will be 

important to test normal hematopoietic stem cells to assess the impact of PCFT-selective analogs 

on this cell fraction. 

The importance of PCFT expression in normal tissues to the development of drug 

toxicities will depend on transport function of PCFT in these tissues. Even though PCFT-

mediated transport is maximal at low pH, transport is also detected at pH 7.4 in human cells and 

Xenopus oocytes that express PCFT. This residual PCFT function at pH 7.4 is thought to be 

driven by increases in membrane potential. Whether the level of PCFT-mediated transport at pH 

7.4 in normal tissues is sufficient to cause dose-limiting toxicity of antifolates selective for PCFT 

mediated uptake remains to be determined. Additionally, there are instances of a localized acidic 

environment created by Na+/H+ exchangers at the basolateral membranes of the choroid plexus 

(Segal, 2000) and hepatocyte (Horne, 1993) which may contribute to uptake and toxicity in 

normal tissues generally thought to be at neutral extracellular pH.  

PCFT expression is not static, as it has been found to be modulated by promoter 

methylation, vitamin D3 and the NRF-1 transcription factor. Hypermethylation of the PCFT 

promoter was shown to be associated with low PCFT protein expression in CCRF-CEM and 

Jurkat T-cell leukemia cell lines (Gonen et al., 2008) and a MTX-resistant HeLa cell line (R1) 

(Diop-Bove et al., 2009) and could represent a mechanism of resistance against drugs that use 

PCFT as their primary means of cellular entry. Nutritional status could also affect PCFT 

expression, as VDR heterodimerizes with RXRα in response to vitamin D3 and binds a VDR 

response element in the PCFT promoter region (-1694/-1680), increasing expression of PCFT 

(Eloranta et al., 2009).  Interestingly, mouse PCFT transcript levels increased ~13-fold in the 
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proximal small intestine in mice fed folate-deficient versus folate-replete diets, consistent with 

the critical role that PCFT plays in intestinal folate absorption (Qiu et al., 2007). Interestingly, 

PCFT mRNA expression directly correlated with NRF-1 transcript levels in these tissues and 

was dependent on folate status (C. Cherian, unpublished observation), reaffirming the likely 

importance of NRF-1 in PCFT transcriptional control (Gonen and Assaraf, 2010). Thus, dietary 

increases or decreases in folate and vitamin D3 levels could affect expression of PCFT in normal 

tissues and could impact antifolate toxicity. The extracellular pH surrounding a cell may also 

have an effect on PCFT expression. For instance, treatment of patients with proton pump 

inhibitors, which increase extracellular pH, leads to decreased PCFT expression and folate 

deficiency due to reduced folate uptake from the gut (Urquhart et al., 2010). Of course, 

transcriptional control is most likely not the only mechanism of PCFT regulation. PCFT protein 

expression may also be stimulus controlled, such that decreased extracellular folate or decreased 

extracellular pH may induce cycling of PCFT from intracellular compartments to the cell surface 

in order to facilitate folate uptake. Indeed, PCFT protein has not only been found on the cell 

surface but also in intracellular compartments (Kugel Desmoulin et al., 2010b; Qiu et al., 2006), 

and PCFT has been proposed to aid in the exit of (anti)folate from acidic endosomes (Zhao et al., 

2009b). It may be possible that the presence of intracellular PCFT may have particular regulatory 

significance.     

This chapter has established PCFT expression in many solid tumor cell lines, but whether 

the level of expression and function is enough to transport a cytotoxic dose of antifolates that use 

this mechanism is still unknown. There is some indication that PCFT may facilitate PMX uptake 

and cytotoxicity toward solid tumor cell lines that express moderate levels of PCFT. PMX is a 

transport substrate for both RFC and PCFT-mediated uptake and is the best known substrate for 
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PCFT (Zhao and Goldman, 2007). Upon loss of RFC expression, when PCFT was the sole 

mechanism of PMX transport, uptake by PCFT was sufficient to maintain PMX cytotoxicity 

(Chattopadhyay et al., 2006; Zhao et al., 2004c) (See Chapter 5). Uptake of cytotoxic antifolates 

by RFC not only precludes selectivity, since RFC, as shown in this chapter as well as by 

Whetstine et al. (2002a) is expressed and functional in human normal tissues. However, its 

ability to transport antifolates into tumor cells may be compromised due to reduced transport 

activity at acidic pHs characterizing the tumor microenvironment. This suggests that designing 

drugs with greater affinity for PCFT and not the RFC has the potential to increase tumor 

selectivity without loss of drug activity (Kugel Desmoulin et al., 2011; Kugel Desmoulin et al., 

2010b; Wang et al., 2010; Wang et al., 2011) (see Chapters 3 and 4). Due to the low activity of 

RFC at acidic pHs, tumor cells may favor overexpression of H+-coupled transporters, such as 

PCFT, in order to transport folates to meet their nutritional and metabolic requirements and to 

gain a competitive advantage in the acidic tumor microenvironment (Anderson and Thwaites, 

2010). Hence, PCFT expression and function may increase in more advanced aggressive tumors, 

suggesting that antifolates selectively transported into tumor cells by PCFT would make better, 

more selective drugs that have the potential to improve therapy.  Future studies should look at 

expression of PCFT with increasing tumor stage or grade.  

To determine whether the therapeutic targeting of agents selective for PCFT uptake by 

utilizing tumor acidity to drive drug uptake will be successful, investigators will not only need to 

establish PCFT expression in tumors but also PCFT function. Further, the ability to measure 

tumor pH with accuracy, precision and high spatiotemporal resolution in experimental preclinical 

systems and in human beings will be very important for this therapeutic strategy (Zhang et al., 

2010). Recent advances in optical imaging, PET radiotracers, and magnetic resonance 
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spectroscopy (MRS) and magnetic resonance imaging (MRI) have improved the ability to 

measure tumor pH. Optical techniques such as fluorescence ratio imaging spectroscopy and 

fluorescent lifetime imaging can be used to measure tumor pH. These methods use fluorescent 

probes that have varied fluorescent properties depending on local pH, which can be measured 

optically and converted to a pH distribution map. Positron emission tomography (PET)-based 

approaches use pH-sensitive PET radiotracers including the pH (low) insertion peptide (pHLIP) 

conjugated to 64Cu (Vavere et al., 2009). pHLIP is a peptide that predominantly inserts across a 

lipid bilayer as a monomeric α-helix at an acidic extracellular environment but not at a normal 

physiological pH (Andreev et al., 2007; Fendos and Engelman, 2012). MRS methods are 

generally based on a difference in chemical shifts between pH-dependent and independent 

resonances; several isotopes have been evaluated for determination of tumor pH, such as 31P-

MRS and 1H-MRS with some success. There are still some limitations in spatial and temporal 

resolution (Gillies and Morse, 2005). Hyperpolarized 13C bicarbonate is a technique that uses 13C 

MRI and is based on transferring the polarization of unpaired electrons to neighboring nuclei by 

microwave irradiation of the sample (Hu et al., 2008). Finally, an alternative approach uses MRI 

and relies on agitating the relaxivity of water with pH-dependent relaxation agents (Aime et al., 

1999; Garcia-Martin et al., 2006; Zhang et al., 1999). With the improvement of in vivo pH 

measurements, it may be possible to target treatment to those tumors that are more acidic, thus 

focusing therapy on the population of patients that will most benefit from PCFT-selective agents.  
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CHAPTER 3 
 

THE IDENTIFICATION OF NOVEL ANTIFOLATES WITH PCFT-SELECTIVE 
UPTAKE 

 
3.1 Introduction. 

The activities of RFC, PCFT and FR folate transport systems toward antifolate substrates 

in tissues and tumors reflect their relative expression levels, along with their specificities for 

different antifolates and transport kinetics. With this said, antifolates selective for RFC, which 

include all classical antifolates presently approved by the FDA, can be envisaged to possess 

limited selectivity toward tumors over normal proliferative tissues such as bone marrow since 

these tissues all express RFC (Chapter 2 and Whetstine et al. (2002a)). The therapeutic approach 

of rational folate analog design that is based on targeting delivery into cancer cells by exploiting 

the tumor-specific patterns of expression and/or function of PCFT and FR may lead to more 

tumor-selective therapeutics. This approach is not entirely unprecedented, as recent efforts have 

focused on targeting FR as a means of delivering cytotoxic antifolates into the tumor cell. For 

instance, ONX0801 (previously BGC945) which is selectively transported by FRs and inhibits 

TS as its primary target (Gibbs et al., 2005; Theti et al., 2003) has recently been licensed by 

Onyx Pharmaceuticals and is currently in Phase I in the United Kingdom. Another approach 

links a variety of lipid soluble drugs, structurally unrelated to folates, to folic acid via a covalent 

bond. The complex binds FR on the cell surface, is endocytosed, the bond is broken in the 

reducing environment of the endosome, and the drug diffuses out of the endosome to inactivate 

its intracellular target. Several such agents have been designed. BMS-753493 is a molecule born 

from collaboration between scientists at Endocyte Inc. and Bristol Myers Squibb. It represents a 

folic acid conjugate that was constructed with a semi-synthetic analog of Epothilone A (a 

microtubule inhibitor). BMS-753493 is currently being evaluated for safety and efficacy in Phase 
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II clinical trials sponsored by Bristol Myers Squibb. EC-145 (Endocyte) is a desacetylvinblastine 

monohydrazide – folic acid complex (Reddy et al., 2007). A randomized Phase II trial is near 

completion in which EC-145 with Doxil was compared to Doxil alone for the treatment of 

platinum-resistant ovarian cancers (Dosio et al., 2010). Farletuzumab is a humanized MoAb with 

high affinity for FRα. Preclinical studies have demonstrated that farletuzumab mediates robust 

antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro, 

inhibits tumor growth in ovarian tumor xenografts, and displays a safe toxicology profile in non 

human-primates (Kalli, 2007; Smith-Jones et al., 2008). Farletuzumab has shown clinical 

efficacy in early phase trials as single agent and combination therapy with minimal drug-specific 

toxicity (Spannuth et al., 2010). The Phase III development plan in ovarian cancer patients 

includes combination chemotherapy studies in both platinum-sensitive (recently launched) and 

platinum-resistant (planned) recurrent disease (Bellati et al., 2011). 

Based on the clinical successes of PMX, and in an effort to design novel antifolates with 

specificities other than RFC, our lab formed collaborations with Dr. Aleem Gangjee’s group 

from Duquesne University.  This cooperation has resulted in several novel series of compounds 

based on the chemical structure of PMX.  These include: (i) 6-substituted pyrrolo[2,3-

d]pyrimidine benzoyl antifolates with carbon bridge length variations of  1- to 6-carbons, 

compounds 1-6, respectively (Deng et al., 2008; Kugel Desmoulin et al., 2010b) (Figure 3.1, 

Panel A); (ii ) 6-substituted thieno[2,3-d]pyrimidine benzoyl antifolates with bridge length 

variations from 2-8 carbon atoms, compounds 7-13, respectively (Deng et al., 2009) (Figure 3.1, 

Panel B); (iii ) 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl replacement for 

the benzoyl moiety and bridge length variations from 1-6 carbons, compounds 14-19, 

respectively (Kugel Desmoulin et al., 2011; Wang et al., 2010; Wang et al., 2011) (Figure 3.1, 
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Panel C); and the (iv) 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers with a 4-

carbon bridge and different thienoyl ring substitutions (compounds 20-24) (Wang et al., 2012) 

(Figure 3.1, Panel C).   

The rationale behind the synthesis of the 6-substituted pyrrolo[2,3-d]pyrimidine benzoyl 

structures (group (i) above) (Figure 3.1, Panel A) is in part based on the finding that the 6-regio 

isomer of PMX (compound 2) was inactive against the growth of tumor cells expressing RFC in 

culture (Shih, 1993). Gangjee et al. postulated that a possible reason for its inactivity in culture 

could be that transposing the 5-ethylene bridge to the 6-position forces the benzoyl glutamic acid 

side chain in an orientation different from that required for optimal enzyme interaction and 

antitumor activity (Gangjee et al., 2005; Gangjee et al., 2004).  They therefore elongated the 

ethylene bridge between the heterocycle and para-aminobenzoate with 3 (compound 3) or 4 

(compound 4) methylene groups to allow greater conformational flexibility.  Compounds 3 and 4 

were both modest inhibitors of proliferation with CCRF-CEM leukemia cells (express RFC but 

no PCFT or FR) in the presence of micromolar concentrations of folic acid (Gangjee et al., 2005; 

Gangjee et al., 2004). Our laboratory found that the 6-substituted pyrrolo[2,3-d]pyrimidine 

benzoyl analogs were characterized by potent and selective substrate activities for FRα and FRβ, 

and negligible substrate activity for RFC.  Moreover, the intracellular enzyme target of the 6-

substituted pyrrolo[2,3-d]pyrimidine benzoyl antifolates was identified as GARFTase, the first 

folate-dependent reaction in the de novo purine nucleotide biosynthesis pathway (Deng et al., 

2008). 

The synthesis of 6-substituted thieno[2,3-d]pyrimidine benzoyl antifolates with bridge 

length variations (from 2-8 carbon atoms; compounds 7-13 respectively) (group (ii), above) 

(Figure 3.1, Panel B) was pursued to try to find a more potent analog and to understand the  
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structural determinants of transport selectivity.  Isosteric replacement of the pyrrolo ring with a 

thieno ring for this series provided an increase in ring size that more closely approximates the 

pteridine, 6-6 fused ring system of the natural cofactor.  In addition, replacement of the NH of 

the pyrrole with an S also allows for comparison of the relative importance of a hydrogen bond 

donor (NH) with a hydrogen bond acceptor (S).  Our laboratory found that the 6-substituted 

thieno[2,3-d]pyrimidine antifolate series was characterized by potent and selective substrate 

activities for FRα and FRβ, and negligible substrate activities for RFC.  Furthermore, the 6-

substituted thieno[2,3-d]pyrimidine antifolates were found to target both GARFTase and 

AICARFTase (Deng et al., 2009). 

The rationale for the synthesis of 6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl 

replacement for the benzoyl moiety and bridge length variations from 1-6 carbons antifolates 

(compounds 14-19, respectively) (group (iii) above) (Figure 3.1, Panel C) came from the 

discovery and biochemical evaluation of RTX. RTX was synthesized by replacing the para-

aminobenzoate of ICI 198583 (a precursor analog of RTX) with a thiophene and a N10-methyl 

substituent. This modification reduced TS inhibition compared to earlier analogs but enhanced 

cellular uptake by RFC and polyglutamylation leading to more potent tumor growth inhibition 

both in vitro and in vivo. Therefore, the rationale was that combining the chemical structures of 

the 6-substituted PMX with different carbon bridge lengths with the thienoyl group of RTX 

might give a more potent novel antifolate.   

As an alternative approach for decreasing the distance between the bicyclic pyrrolo[2,3-

d]pyrimidine and the L-glutamate portions, we systematically assessed the effects on cell 

proliferation for an expanded series of pyrrolo[2,3-d]pyrimidine thienoyl regioisomers of 17 with 

a 4-carbon bridge and thienoyl ring substitutions, 2’,3’ (20), 4’,5’ (21), 3’,4’ (22), 3’,5’ (23), and 
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2’,4’ (24) (group (iv) above) (Figure 3.1, Panel C). In analogs 20-24, the [1,2] substitution 

pattern on the thiophene forces the bicyclic scaffold and L-glutamate closer together than in the 

parent 3-atom bridge compound 16 which includes a [1,3] pattern on the thiophene ring. 

This chapter will explore the potential of PCFT to selectively deliver cytotoxic antifolates 

for the chemotherapy of tumors. The transport activity profile for the earlier series of 6-

substituted pyrrolo[2,3-d]pyrimidine benzoyl antifolates (Deng et al., 2008) and 6-substituted 

thieno[2,3-d]pyrimidine benzoyl antifolates (Deng et al., 2009) will be expanded to include 

PCFT and the transport selectivity of the other novel series will be established. The potent 

antiproliferative activities of these compounds, attributable to inhibition of GARFTase and de 

novo purine biosynthesis, will be characterized. The goal is to establish a structure-activity 

relationship for compounds that are selective for PCFT-mediated uptake, have no RFC substrate 

activity and cause cell death through GARFTase inhibition at doses that are pharmacologically 

feasible. The findings presented here will establish that PCFT is an efficient means of delivering 

cytotoxic antifolate drugs and suggest that PCFT provides a unique opportunity to selectively 

target solid tumors with cytotoxic antifolates that are not substrates for the ubiquitously 

expressed RFC. 

3.2 Materials and Methods. 

3.2.1 Chemicals and Reagents. 

[3’,5’,7-3H]MTX (20 Ci/mmol) and [3H]PMX (3.7 Ci/mmol) were purchased from 

Moravek Biochemicals (Brea, CA). Unlabeled MTX and (6 R,S)-5-formyl tetrahydrofolate (5-

CHO-THF) were provided by the Drug Development Branch, National Cancer Institute, 

Bethesda, MD. Both labeled and unlabeled MTX were purified by HPLC prior to use (Fry et al., 

1982).  The sources of the antifolate drugs were as follows. RTX [N-(5-[N-(3,4-dihydro-2-
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methyl-4-oxyquinazolin-6-ylmethyl)-N-methyl-amino]-2-thenoyl)-L-glutamic acid] was 

obtained from AstraZeneca Pharmaceuticals (Maccesfield, Cheshire, England); LMX (5,10-

dideaza-5,6,7,8-tetrahydrofolate) and PMX (Alimta) were from Eli Lilly and Co. (Indianapolis, 

IN); GW1843U89 [(S)-2-(5-(((1,2-dihydro-3-methyl-1-oxo-benzo(F) quinazolin-9-yl) methyl) 

amino)1-oxo-2-isoindolinyl) glutaric acid] was from the GlaxoWellcome-SmithKline Co. 

(Research Triangle Park, NC); and Nalpha-(4-amino-4-deoxypteroyl)-Ndelta-hemiphthaloyl-L-

ornithine (PT523) was a gift of Dr. Andre Rosowsky (Boston, MA).  Restriction and modifying 

enzymes were purchased from Promega (Madison, WI).  Other chemicals were obtained from 

commercial sources in the highest available purities. Synthesis and properties of the 6-substituted 

pyrrolo[2,3-d]pyrimidine benzoyl antifolate compounds 1-6 (1-6 methylene groups in the bridge 

region connecting the pyrrolo[2,3-d]pyrimidine moiety to para-aminobenzoate) were described 

(Deng et al., 2008; Kugel Desmoulin et al., 2010b). Synthesis and properties of the 6-substituted 

thieno[2,3-d]pyrimidine antifolate with bridge variations from 2-8 carbon atoms (compounds 7-

13) were described (Deng et al., 2009). Synthesis and properties of pyrrolo[2,3-d]pyrimidine 

thienoyl antifolate compounds 14-19 (1-6 methylene groups in the bridge region connecting the 

pyrrolo[2,3-d]pyrimidine moiety to para-aminobenzoate) were described (Kugel Desmoulin et 

al., 2011; Wang et al., 2010). Finally, synthesis and properties of 6-substituted pyrrolo[2,3-

d]pyrimidine thienoyl regioisomers with a 4-carbon bridge and different thienoyl ring 

substitutions (compounds 20-24) were described (Wang et al., 2012).    

3.2.2 Cell Culture. 

Novel antifolate preliminary screening was performed in sublines derived from PCFT-, 

RFC-, and FR-null MTXRIIOuaR2-4 (R2) Chinese hamster ovary (CHO) cells (Flintoff and 

Nagainis, 1983), a gift from Dr. Wayne Flintoff (University of Western Ontario, London, 
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Ontario, Canada). R2 cells were cultured in alpha-minimal essential media (MEM) supplemented 

with 10% bovine calf serum (Invitrogen, Carlsbad, CA), 100 units/mL penicillin, 100 µg/mL 

streptomycin, and 2 mM L-glutamine at 37˚C with 5% CO2. PC43-10 and R2/PCFT4 cells are 

R2 cells stably transfected with human RFC (Wong et al., 1995) or human PCFT (Kugel 

Desmoulin et al., 2010b), respectively. Generation of R2/PCFT4 cells is described below. Both 

cell lines were cultured in complete alpha-MEM medium plus 1 mg/mL G418. Using 

LookOut™, a PCR-based Mycoplasma detection kit from Sigma Chemical Company (St. Louis, 

MO), cell lines were periodically determined to be free of Mycoplasma. 

3.2.3 Preparation of a Myc-His6-tagged Human PCFT Construct and Generation of 

Stable Transfectants. 

Total RNA from wild type HeLa cells was reverse transcribed and PCR amplified with 

EasyA proof-reading polymerase (Agilent Technologies, La Jolla, CA) using the following 

primers: 5’-AACTC GGA TCC gca cat gga ggg gag cgc gag cc-3’; and 5’–AACTC GGT ACC 

ggg gct ctg ggg aaa ctg ctg gaa ctc ga-3’ (bold capitals designate the BamHI and KpnI restriction 

sites, respectively). The 1403 bp amplicon was subcloned into pCDNA3.1 (Invitrogen) in-frame 

with a Myc-His6 sequence inserted at the C-terminal amino acid 466 (hereafter designated 

PCFTMyc-His6/pCDNA3.1). The construct was confirmed by automated DNA sequencing at the 

Wayne State University Sequencing Core.  

R2 cells were transfected with PCFTMyc-His6/pCDNA3.1 by electroporation (200 V, 1000 

µF capacitance). After 24 h, the cells were cultured in the presence of G418 (1.5 mg/mL). Stable 

clones were selected by plating for individual colonies in the presence of 1.5 mg/mL G418. 

Colonies were isolated, expanded and screened for expression of PCFTMyc-His6 protein by 

Western blotting and transport assays at pH 5.5 (see below).  One clone (R2/PCFT4) was 



www.manaraa.com

 

 

79

selected for further study. Vector control R2 cells (R2/VC) transfected with empty pCDNA3.1 

were also prepared and used as a negative control. 

3.2.4 Gel Electrophoresis and Western Blotting. 

For characterizing PCFT and RFC protein expression in R2/PCFT4 and PC43-10 cells, 

respectively, crude plasma membranes were prepared by differential centrifugation. Briefly, cells 

were suspended in 10 mM Tris-HCl, pH 7.0, containing X1 protease inhibitor cocktail tablets 

(Roche, Indianapolis, IN), and disrupted with a probe sonicator. The cell homogenate was 

centrifuged (600 x g, 10 min) to remove cell debris and nuclei; the supernatant was then 

centrifuged at 200,000 x g (48,000 rpm) in a Beckman TL100 ultracentrifuge for 30 min. The 

particulate fraction was solubilized in 10 mM Tris-HCl (pH 7) with 2% SDS in the presence of 

proteolytic inhibitors and proteins were quantified with Folin-phenol reagent (Lowry et al., 

1951). Membrane proteins were electrophoresed on 7.5% polyacrylamide gels in the presence of 

SDS (Laemmli, 1970) and electroblotted onto PVDF (Pierce, Rockford, IL) (Matsudaira, 1987). 

PCFTMyc-His6 protein was detected with monoclonal Myc-specific mouse antibody (Covance, 

Berkeley, CA) and secondary IRDye800CW-conjugated antibody (Rockland, Gilbertsville, PA). 

Detection of immunoreactive proteins used the Odyssey® Infrared Imaging System (LI-COR, 

Lincoln, NE). 

3.2.5 Indirect Immunofluorescence and Confocal Microscopy. 

For confocal microscopy, R2/PCFT4 and R2/VC CHO cells were plated in Lab-Tek®II 

chamber slidesTM (Nalge Nunc International, Naperville, IL).  Cells were fixed with 3.3% 

paraformaldehyde (in DPBS), permeabilized with 0.1% Triton X-100 (in PBS), and stained with 

monoclonal Myc-specific mouse antibody (Covance) and Alexa Fluor® 488 donkey anti-mouse 

IgG (H+L) secondary antibody (Molecular Probes, Eugene, OR). Slides were visualized with a 
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Zeiss laser scanning microscope 510 using a 63x water immersion lens, and exactly the same 

parameter setting for all samples. Confocal analysis was performed at the Imaging Core of the 

Karmanos Cancer Institute.   

3.2.6 Transport Assays. 

The expression and function of PCFT and RFC in R2/PCFT4, R2/VC, PC43-10 and R2 

cell lines was validated by measuring pH-dependent transport of 0.5 µM [3H]MTX over 2 min at 

37°C in cell suspensions. Briefly, three days before transport experiments, cells grown in 

monolayers, under G418 selection, were transferred to Cytostir spinners and maintained in 

suspension at densities of 2-5 x 105 cells/mL. Cells were collected by centrifugation, washed 

with DPBS, and the cell pellets (~2 x 107 cells) were suspended in 2 mL of either  [3H]MTX  

containing HEPES-buffered saline (20 mM HEPES, 140 mM NaCl, 5 mM KCl, 2 mM MgCl2, 

and 5 mM glucose) at pH 6.8 or 7.2, or in MES-buffered saline  (20 mM MES, 140 mM NaCl, 5 

mM KCl, 2 mM MgCl2, and 5 mM glucose) at pH 5.5, 6.0, or 6.5 (Zhao et al., 2004b). At the 

end of the incubations, transport was quenched with ice-cold DPBS, cells were washed 3 times 

with ice-cold DPBS, and cellular proteins were solubilized with 0.5 N NaOH. Levels of drug 

uptake were expressed as pmol/mg protein, calculated from direct measurements of radioactivity 

and protein contents of the cell homogenates. Radioactivity was measured with a scintillation 

counter (Model LS6500; Beckman-Coulter, Fullerton, CA) and proteins were quantified using 

Folin-phenol reagent (Lowry et al., 1951). 

To determine [3H]MTX and [3H]PMX kinetic constants for PCFT in R2/PCFT4 cells (Kt 

and Vmax), transport rates were measured at pH 6.8 and pH 5.5, as described above, using 

substrate concentrations from 0.04 to 5.0 µM. Kt and Vmax values were determined from 

Lineweaver-Burke plots. Inhibition of RFC transport by unlabeled antifolates (reflecting 
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transport by the carrier) was measured in PC43-10 cells over 2 min at 37oC in Hank’s balanced 

salts solution (pH 7.2) with 0.5 µM [3H]MTX and 10 µM inhibitor.  For PCFT, inhibition of 

transport was determined from pH 5.5 to 7.2 in the above MES- and HEPES-buffered saline over 

2 min at 37oC with 0.5 µM [3H]MTX and 10 µM inhibitors. Kis for PCFT were calculated from 

Dixon analysis, by plotting reciprocal transport velocities measured over a range (1-5 µM) of 

inhibitor concentrations and 0.5 µM [3H]MTX at pH 5.5 and pH 6.8. Ki values were calculated 

from the slopes, Kt and Vmax values for MTX, and the concentration of [3H]MTX, using the 

equation Ki=Kt/(Vmax)(slope)(S).  

3.2.7 Electrophysiology Experiments. 

Electrophysiology experiments were performed in collaboration with Dr. Michael 

Romero (Mayo Clinic, Rochester, MN). Xenopus oocytes were used to assess currents associated 

with transport of the antifolate substrates.  PCFT cRNA (50 nL of 0.5 µg/µL, i.e., 25 ng) or water 

(50 nL) was injected into stage V/VI oocytes and electrophysiological measurements were made 

3-5 days later (Unal et al., 2009a). Oocytes were voltage clamped to -90 mV to maximize folate-

induced currents, a technique that was previously utilized in studies on the divalent metal 

transporter, DMT1 (Gunshin et al., 1997; Mackenzie et al., 2006) and PCFT (Unal et al., 2009a). 

Oocyte solutions were adjusted to pH 5.5 using MES. During these experiments, oocytes were 

continuously superfused with solution (with and without antifolates as indicated) at 5 mL/min.  

3.2.8 Proliferation and Colony-forming Assays. 

For growth inhibition assays, R2/PCFT4 CHO cells were plated in 96 well culture dishes 

(2500 cells/well, respectively; total volume of 200 µL medium) with a broad concentration range 

of drugs. The drugs were dissolved in DMSO such that after dilution the DMSO concentration 

did not exceed 0.5%. The medium was folate-free RPMI 1640 (pH 7.2) supplemented with 10% 
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dialyzed fetal bovine serum (dFBS) (Invitrogen), 2 mM L-glutamine, 100 units/mL penicillin 

and 100 µg/mL streptomycin (hereafter referred to as complete folate-free RPMI 1640 media), 

containing 25 nM 5-CHO-THF. Cells were routinely incubated for up to 96 h, and metabolically 

active cells (a measure of cell viability) were assayed with CellTiter-Blue™ cell viability assay 

(Promega). Fluorescence was measured (590 nm emission, 560 nm excitation) with a Molecular 

Devices fluorescence plate reader. Data were exported from Softmax Pro software to an Excel 

spreadsheet for analysis and determinations of IC50s, corresponding to drug concentrations that 

result in 50% loss of cell growth. In some experiments, the protective effects of adenosine (60 

µM), thymidine (10 µM), and 5-amino-4-imidazolecarboxamide (AICA) (320 µM) were tested to 

validate the intracellular targeted pathways and enzymes for the cytotoxic antifolates. Growth 

inhibition assays for the PC43-10 CHO were routinely performed in regular RPMI 1640 (pH 7.2) 

supplemented with 10% dFBS (Invitrogen), 2 mM L-glutamine and 100 units/mL penicillin and 

100 µg/mL streptomycin (hereafter referred to as complete RPMI 1640 media), although for a 

few experiments PC43-10 cells were cultured exactly as for the R2/PCFT4 cells. To follow 

changes in pH accompanying cell outgrowth, cells were seeded into T75 flasks, using the same 

media, cell number to volume ratio, and incubation times as for the cytotoxicity assays. Media 

pH values were measured daily with an Orion 2 Star benchtop pH meter. 

For colony-forming assays, R2/PCFT4 cells (500 cells) were harvested in log-phase and 

plated into 60 mm dishes in complete folate-free RPMI 1640 medium, supplemented with 25 nM 

5-CHO-THF and allowed to adhere for 48 h. For continuous drug exposures, R2/PCFT4 cells 

were then treated with increasing concentrations of drugs and colonies were allowed to outgrow 

for 10 days. At the end of the incubations, the dishes were rinsed with DPBS, 5% trichloroacetic 

acid (TCA), and borate buffer (10 mM, pH 8.8), followed by 1% methylene blue (in borate 
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buffer; 30 min). The dishes were again rinsed with borate buffer, and colonies were counted for 

calculating percent colony formation relative to the DMSO control.  

To test the reversibility of compound 3 drug effects, as reflected in inhibition of colony 

formation over time, R2/PCFT4 cells were harvested in log phase and 500 cells were plated, 

allowed to adhere for 48 h, then cultured in the presence or absence of 1 µM antifolate 

compounds and thymidine (10 µM) plus adenosine (60 µM) for 2, 4, 8, 24, or 48 h, before 

rinsing with DPBS and adding medium with or without thymidine (10 µM) plus adenosine (60 

µM). The dishes were incubated for 10 days, and colonies were counted, as described above, for 

calculating percent colony formation compared to control. 

3.2.9 In situ Assays for GARFTase. 

Incorporation of [14C(U)]glycine into [14C]formyl GAR as an in situ measure of 

endogenous GARFTase activity in R2/PCFT4 cells was performed using a modification of 

published methods (Beardsley et al., 1989; Deng et al., 2008).  For these experiments, R2/PCFT4 

cells were seeded in 5 mL of complete folate-free RPMI 1640 plus 25 nM 5-CHO-THF in T25 

flasks at a density of 2 x 105 cells per flask. After 48 h, antifolate inhibitor or DMSO (control) 

was added to the culture medium and the cells were incubated for another 15 h after which the 

pH of the media was determined with an Orion 2 Star benchtop pH meter. Cells were washed 

twice with DPBS and resuspended in 5 mL folate-free, L-glutamine-free RPMI 1640 (Sigma) 

plus penicillin-streptomycin, 10% dFBS, 0.46 g/L NaHCO3 and 1.21 g/L NaCl medium, with or 

without 0.5-100 nM antifolate and azaserine (4 µM final concentration), and incubated for 30 

min.  L-glutamine (2 mM final concentration) and [14C]glycine (final specific activity, 0.1 

mCi/L) were added, followed by incubation at 37o C for 8 h, after which time cells were 

trypsinized and washed twice with ice-cold DPBS. Cell pellets were treated with 2 mL of 5% 
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TCA at 0o C. Cell debris was removed by centrifugation, samples were solubilized in 0.5 N 

NaOH and assayed for protein contents (Lowry et al., 1951). The supernatants were extracted 

twice with 2 mL of ice-cold ether to remove the TCA. The aqueous layer was passed through a 1 

cm column of AG1x8 (chloride form), 100-200 mesh (BioRad), washed with 10 mL of 0.5 N 

formic acid, followed by 10 mL of 4 N formic acid, and eluted with 8 mL of 1 N HCl solution. 

The elutants were collected as 1 mL fractions and determined for radioactivity.   

3.2.10 Determination of Intracellular ATP/GTP Levels. 

For analysis of ATP and GTP levels following antifolate treatments, R2/PCFT4 cells 

were seeded in 10 mL of complete folate-free RPMI 1640 plus 25 nM 5-CHO-THF in T75 flasks 

at a density of 7 x 105 cells per flask. After 48 h, antifolates or DMSO (control) were added to 

the culture medium. After another 24 h, the cells were trypsinized and washed (2x) with ice-cold 

DPBS, with a final additional wash with ice-cold DPBS containing 1 mM EDTA. The final cell 

pellet (2-5 x 106 cells) was resuspended in 100 µL of 155 mM NaCl containing 1 mM EDTA and 

100 µL of ice-cold 0.6 M TCA was added drop-wise while vortexing. Samples were incubated 

10 min on ice with occasional mixing, and then centrifuged (14,000 rpm, 5 min).  The 

supernatant was removed, whereas the protein pellet was solubilized in 0.2 mL of 0.5 N NaOH 

for protein determinations. Tri-n-octylamine (0.5 M) in trichlorotrifluoroethane (Freon) (1 mL) 

was added to the supernatant and the mixtures vortexed and incubated for 20 min on ice. 

Samples were centrifuged and the freon amine (lower) layer was discarded. One mL of 

methylene chloride was added to the upper layer, followed by mixing, incubation (ice, 10 min), 

centrifugation, and removal of the organic (lower) layer. Samples were stored at -80oC until 

analysis. Intracellular adenosine and guanosine triphosphates were measured by a modification 

of the HPLC method of Huang et al. (2003a). The chromatography system consisted of a Varian 
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9010 ternary gradient pump, a 9050 variable wavelength detector, and a Varian Star 5.3 data 

handling system. A 50 µL injection loop was used. The analytical column was a Waters 

Symmetry C18 (5 µm, 150 x 4.6 mm) equipped with a Waters Novapak phenyl pre-column 

(Waters, Milford, MA). The detection wavelength was set at 254 nm.  The flow rate was 1 

mL/min.  The gradient elution was as follows: 0-30 min at 60% A/40% B; 30-50 min linear at 

1%/min to 40% A/60% B; and 50-60 min at 40% A/60% B. Buffer A was comprised of 10 mM 

tetrabutylammonium hydroxide, 10 mM KH2PO4 and 0.25% methanol (MeOH); the pH was 

adjusted to 6.9 with 1 N H3PO4. Buffer B consisted of 5.6 mM tetrabutylammonium hydroxide, 

50 mM KH2PO4 and 30% MeOH; the pH was adjusted to 7.0 with 1 N KOH. Both solutions 

were freshly prepared before each experiment and degassed. External standards were used for 

each assay to construct a standard curve from which cellular levels were calculated. Standards 

ranged from 0-75 µM for ATP and 0-30 µM for GTP in the initial mobile phase. Variations 

between standards were 5% or less. Extraction efficiencies were established by adding known 

amounts of ATP and GTP standards (200 and 50 µM, respectively) to a control sample prior to 

extraction. 

3.3 Results. 

3.3.1 Generation of PCFT Stable Transfectants in Transport-impaired CHO Cells.    

As part of our larger drug discovery endeavor to establish pharmacophores for all the 

major folate transporters and to develop transporter-specific drugs, we previously generated 

novel sublines derived from the RFC, FR-, and PCFT-null MTXRIIOuaR2-4 CHO cells 

(hereafter, simply R2) that ectopically express human RFC protein (designated PC43-10; Figure 

3.2, Panel A and E ) (Wong et al., 1995) and human FRs (designated RT-16). 
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Figure 3.2 Characterization of PCFT protein expression, membrane localization and pH-
dependent transport in R2/PCFT4 and R2/VC cells. Panel A, Western blot analysis of RFC in 
PC43-10 and R2 cells. Panel B, human PCFTMyc-His6 in R2/PCFT4 and R2/VC cells. 
Membrane fractions (10 µg) were analyzed by SDS-PAGE and immunoblotting with human 
RFC and PCFT polyclonal antibody. Panel C, Immunofluorescence of R2/PCFT4 and R2/VC 
cells. Cells were fixed with paraformaldehyde, permeabilized with Triton X-100, stained with 
anti-myc antibody and visualized using confocal microscopy. Panel D, PCFT transport activity 
in R2/PCFT4 and R2/VC cells was assessed by measuring uptake of 0.5 µM [3H]MTX at 37˚C 
for 2 min at pH 5.5 or 6.0 in MES-buffered saline, and at 6.5, 6.8, or 7.2 in HEPES-buffered 
saline. Internalized [3H]MTX was normalized to total protein and expressed as a percent of the 
transport activity at pH 5.5.  Panel E, RFC transport activity in PC43-10 and R2 cells was 
determined by measuring uptake of 0.5 µM [3H]MTX at 37˚C for 2 min at pH 5.5 or 6.0 in MES-
buffered saline, and at 6.5, 6.8, or 7.2 in HEPES-buffered saline. As above, internalized 
[3H]MTX was normalized to total cellular protein and expressed as percent transport at pH 7.2. 
Transport results are presented as mean values ± standard errors from 6 experiments. 
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More recently, we generated another R2 subline (R2/PCFT4) that expressed human PCFT (Deng 

et al., 2009; Kugel Desmoulin et al., 2010b).  R2/PCFT4 cells were made by electroporating R2 

CHO cells with a Myc-His6-tagged human PCFT (PCFTMyc-His6) cDNA construct. Stable 

transfectants were selected with G418. Clones were isolated, expanded, and screened by Western 

blotting. The clonal R2/PCFT4 subline was established that expressed a high level of PCFTMyc-

His6 protein (Figure 3.2, Panel B).  

By indirect immunofluorescence staining with Myc-specific antibody and Alexa 

Fluor488-tagged secondary antibody, PCFTMyc-His6 protein was targeted predominantly to the cell 

surface of R2/PCFT4 cells with some intracellular staining compared to R2/VC (Figure 3.2, 

Panel C). Expression of PCFTMyc-His6 protein was accompanied by substantial [3H]MTX transport 

at pH 5.5 during 2 min over the low level measured in vector control R2/VC cells (Figure 3.2, 

Panel D). Transport at pH 7.2 was ~14% of that at pH 5.5 and at pH 6.8 transport increased to 

~35% of that at pH 5.5. For RFC-expressing PC43-10 cells, [3H]MTX transport was active at pH 

7.2 as reported (Wong et al., 1995), then fell  with decreasing pH and was essentially 

indistinguishable from the residual low level in R2 cells at pH 5.5 (Figure 3.2, Panel E).  

We measured the kinetics for [3H]MTX and [3H]PMX transport in R2/PCFT4 cells over a 

range of concentrations at pH 5.5 and pH 6.8. Data were analyzed by Lineweaver-Burke plots 

and are summarized in Table 3.2. Results for MTX showed a 16-fold decrease in Kt and a 2.3-

fold increase in Vmax when the pH was decreased from 6.8 to 5.5, whereas for PMX, the Kt and 

Vmax changed 3.7-fold and 4.6-fold respectively. Vmax/Kt values, a reflection of overall transport 

efficiency, were calculated for [3H]MTX and [3H]PMX and were 37-, 17-fold higher, 

respectively, at pH 5.5 than at pH 6.8.  
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 Thus, as previously reported, transport by PCFT shows extraordinary pH dependence 

with the greatest activity at acidic pH. Further, the impact of pH on kinetic parameters for PCFT 

membrane transport varies with different transport substrates (Zhao et al., 2009a).  

3.3.2 Chemosensitivities to Classical Antifolate Inhibitors and Identification of Novel  

Antifolates with PCFT Selectivity over RFC.  

We screened R2/PCFT4 and PC43-10 cells for growth inhibition in the continuous 

presence of established antifolates including MTX, GW1843U89, LMX, PMX, PT523 and RTX. 

Growth inhibition results for PC43-10 were compared to those for R2 cells and R2/PCFT4 

results were compared to R2 cells transfected with empty pCDNA3.1 vector (R2/VC) (Deng et 

al., 2009; Kugel Desmoulin et al., 2010b) (Table 3.1). Assays were performed at pH 7.2 in 

complete RPMI 1640 (for RFC-expressing PC43-10 and R2), or in complete folate-free RPMI 

1640 supplemented with 25 nM 5-CHO-THF (for R2/PCFT4 and R2/VC cells). For most of the 

antifolates, drug sensitivities, as reflected in decreased IC50s for inhibition of growth over 96 h, 

were increased in both R2/PCFT4 and PC43-10 cells over respective controls (Table 3.1). With 

RFC-expressing PC43-10 CHO cells, sensitivities to the classical antifolates were significantly 

increased (from 6.5-fold for PMX to >159-fold for RTX) over R2 cells. Likewise, R2/PCFT4 

cells were sensitive to the classical inhibitors (>8.3- to 74-fold, compared to negative controls). 

Neither GW1843U89 nor PT523 showed any activity toward R2/PCFT4 cells. Since PCFT is 

optimally active at acidic pHs (Figure 3.2, Panel D), we measured the changes in media pH 

during the interval of drug exposure. Over 96 h, the pH of the media decreased linearly and 

reached pH 6.7 to 6.9 by day 4 (data not shown). Thus, at extracellular pHs approximating those 

associated with solid tumor microenvironments, several of these classical agents appeared to be 

substrates for PCFT in R2/PCFT4 cells, as reflected in patterns of growth inhibition. PT523 and 
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GW1843U89 were completely selective toward RFC over PCFT. Only PMX showed any 

indication of selective activity toward PCFT over RFC, (i.e., 74-fold increased activity for 

R2/PCFT4 cells versus 6.5-fold for the PC43-10 cells, compared to respective negative controls). 

However, this was incomplete; i.e., PMX was appreciably active toward both PCFT- and RFC-

expressing cells.  

Initial testing of the 6-substituted pyrrolo[2,3-d]pyrimidine benzoyl antifolate series as 

inhibitors of growth in the isogenic CHO sublines, revealed that compounds 1, 2, and 4-6 were 

all completely inert toward PC43-10 cells, establishing a lack of RFC transport activity for this 

series (Table 3.1). The 3-carbon analog of this series, compound 3, showed a low level activity 

toward PC43-10 cells. Compounds 3 and 4 were active toward PCFT-expressing R2/PCFT4 

cells, and 3 was more potent than 4 by ~9-fold (IC50s of ~23 and ~213 nM, respectively). 

Conversely, compounds 1, 2, 5, and 6 were completely inactive (Table 3.1). This result with 

compounds 3 and 4 is the first identification of an antifolate with selectivity for PCFT-mediated 

uptake with no or very little substrate activity for RFC (Deng et al., 2008; Kugel Desmoulin et 

al., 2010b).   

The 6-substituted thieno[2,3-d]pyrimidine benzoyl antifolate series exhibited a different 

substrate specificity than compounds 3 and 4 when growth inhibition was measured in the CHO 

sublines. Compounds 8 and 9 were characterized by potent and selective substrate activities for 

FRα and FRβ (8 = 9 > 10 > 11) (data not shown) and negligible substrate activities for both RFC 

and PCFT (Table 3.1) (Deng et al., 2009; Kugel Desmoulin et al., 2010b). The most potent 

analogs of the series, compounds 8 and 9, with 3- and 4-methylene groups in the bridge region, 

respectively, showed activities similar to those for the most active classical inhibitors, LMX and 

RTX, toward FR-expressing cells, but were somewhat more active than either PMX or MTX. 
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The finding of FR- but not PCFT selectivity for this series is particularly interesting given the 

report of possible direct functional coupling between these transport systems (Zhao et al., 

2009b). Our results with 6-substituted thieno[2,3-d]pyrimidine benzoyl antifolate substrates for 

FR establish that, should FR-PCFT coupling occur, this must not be obligatory.  

Growth Inhibition of the 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate series 

in the isogenic CHO cell line panel found that while 14, 15 and 17-19 were inert toward RFC-

expressing PC43-10 cells and R2 cells up to 1000 nM drug, compound 16 showed evidence of a 

non-FR, non-PCFT cellular uptake process at higher drug concentrations (seemingly in part 

mediated by RFC and also by a non-RFC uptake mechanism), although substantial FR- and 

PCFT-selectivity over RFC (as reflected in relative IC50s) was nonetheless preserved (Table 3.1). 

Of the pyrrolo[2,3-d]pyrimidine thienoyl antifolates, 16 (3-carbon bridge) and 17 (4-carbon 

bridge) are the most potent agents toward PCFT-expressing R2/PCFT4 cells. Compounds 16, 17 

and 18 showed a high level of PCFT-targeted activity, for PCFT-expressing R2/PCFT4 cells 

with IC50s of 3.34, 43 and 101 nM, respectively (Table 3.1). Activity substantially declined for 

compounds 14 and 15 with 1- and 2-carbon bridge lengths, respectively, and compound 19 was 

completely inert. Compound 16 was more active than the classic agents and was likewise more 

so than compound 17. This was most impressively reflected in the ~11-fold decrease in IC50 (~3 

nM) toward PCFT-expressing R2/PCFT4 cells with 16 compared to 17 (Kugel Desmoulin et al., 

2011; Wang et al., 2010; Wang et al., 2011).  

Finally, 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers with 4-carbon 

bridge lengths and with contiguous thiophene substitutions [2’3’ (20); 4’5’ (21); 3’4’(22)] were 

completely inactive toward the RFC- and PCFT-expressing CHO sublines (Table 3.1). 

Compounds 23 and 24 were likewise inert toward PC43-10 cells, although both compounds 
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inhibited proliferation of R2/PCFT4 cells (IC50s of 41.5 and 63.8 nM for 23 and 24, 

respectively), essentially equivalent to compound 17 (IC50 of 43.4 nM) (Table 3.1). This 

establishes cellular uptake of compounds 23 and 24 by PCFT. Drug sensitivities for 23 and 24 

with R2/PCFT4 cells exceeded those for MTX and RTX, and were comparable to those for 

LMX. However, 23 and 24 were less potent than PMX (~3- and ~5-fold, respectively) and 16 

(~12- and ~19-fold, respectively). None of the 6-substituted pyrrolo[2,3-d]pyrimidine 

regioisomers (17 and 20-24) had any impact on proliferation of R2 or R2/VC cells (Wang et al., 

2012).  

Since nucleoside salvage mechanisms circumvent biosynthetic requirements for reduced 

folates and growth inhibitory effects of classical antifolates such as MTX, we tested excess 

adenosine and thymidine for their capacities to abolish the growth inhibitory effects of the most 

potent analogs (compounds 3, 16 and 17).  Results were compared to those for PMX, reported to 

act as an inhibitor of both purine nucleotide biosynthesis primarily at TS and AICARFTase and 

less so at GARFTase  (Racanelli et al., 2009; Shih and Thornton, 1999), and for LMX, an 

established inhibitor of GARFTase (Beardsley et al., 1989; Mendelsohn et al., 1999; Moran et 

al., 1989). Whereas thymidine (10 µM) also protected R2/PCFT4 cells from the growth 

inhibitory effects of low concentrations (<50 nM) of PMX, at higher PMX concentrations, 

protection was incomplete with thymidine either in the presence or absence of AICA (320 µM) 

(Figure 3.3, Panel A), which is metabolized to AICAR (circumvents drug effects at GARFTase). 

Adenosine (60 µM) could not circumvent effects of PMX. However, growth inhibition by PMX 

was completely reversed by adenosine combined with thymidine. Analogous results were 

previously described for nucleoside protection from the inhibitory effects of PMX for CCRF-

CEM cells (Racanelli et al., 2009). In contrast, for LMX and compounds 3, 16 and 17  
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Figure 3.3 Protection of R2/PCFT4 cells from growth inhibition by PMX, compounds 3, 16 
and 17 in the presence of nucleosides and 5-amino-4-imidazole (AICA).  Proliferation 
inhibition was measured for R2/PCFT4 cells over a range of concentrations of PMX (Panel A), 
LMX (Panel B), 3 (Panel C), 16 (Panel D) or 17 (Panel E), as shown, in complete folate-free 
RPMI 1640 with 25 nM 5-CHO-THF, in the presence or absence of adenosine (60 µM) or  
thymidine (10 µM), or AICA (320 nM). Cell densities were measured with CellTiter-Blue™ 
fluorescence dye and a fluorescence plate reader. Results were normalized to cell density in the 
absence of drug.  Results shown are representative data of experiments performed in triplicate. 
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(Figure 3.3, Panels B-D), growth inhibition was abolished by either adenosine or AICA alone. 

These results establish de novo purine nucleotide biosynthesis as the targeted pathway for 

compounds 3, 16 and 17 and GARFTase as the principal intracellular enzyme target, analogous 

to LMX (Beardsley et al., 1989). 

Cytotoxicity assays were extended to include colony-forming assays. Colony-forming 

assays were performed in which R2/PCFT4 cells were continuously exposed to a range of 

concentrations of compounds 3, 16, 17, PMX, or LMX for 10 days (Figure 3.4, Panels A-E). 

Colonies were scored by counting visible colonies after 10 days and are presented as a percent of 

the vehicle control. Composite results are presented as mean values ± standard errors from 3 

experiments (Panel E). As an inhibitor of colony-formation, compounds 3 (Panel B), 16 (Panel 

C) and 17 (Panel D) gave IC50s of 17.14 + 0.74 nM (SEM), 1.41 + 0.03 nM and 27.17 + 2.89 

nM, respectively, whereas IC50s for PMX (Panel A) and LMX were 4.94 + 0.48 nM and 29.70 + 

0.59 nM, respectively.  

To establish the time-dependent requirements for loss of clonogenicity upon exposure to 

compound 3, LMX, or PMX, R2/PCFT4 cells were exposed to the drugs (each at 1 µM) for 

different times (2, 4, 8, 24, 48, and 72 h), after which drug was removed and cells were incubated 

in the presence or absence of adenosine (60 µM) and thymidine (10 µM). A parallel incubation 

was performed in which cells were treated with drugs and nucleosides, after which drugs were 

removed and cells incubated in the presence of adenosine and thymidine. Colonies were counted 

after 10 days, with results compared to those for the untreated vehicle (DMSO) control. 

Nucleoside protection, both during and after drug treatments, completely protected R2/PCFT4 

cells from loss of colony formation. When cells were treated during the initial incubation with 

antifolates without nucleoside protection, colony formation was significantly inhibited whether  
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Figure 3.4 Inhibition of colony formation. R2/PCFT4 cells were plated into 60 mm dishes at a 
density of 500 cells per dish in the presence or absence of different concentrations of PMX 
(Panel A), 3 (Panel B), 16 (Panel C) or 17 (Panel D) from 1 to 100 nM. Colonies were scored by 
counting visible colonies after 10 days and are presented as a percent of the vehicle control. 
Results are presented as mean values ± standard errors from 3 experiments (Panel E). 



www.manaraa.com

 

 

99

or not nucleosides were included after the drug was removed (Figure 3.5). The difference 

between these two conditions established a time-requirement for irreversible drug effects 

resulting in loss of clonogenicity and ranged from greater than 4 h for PMX (Figure 3.5, Panel 

A) and compound 3 (Panel C), to greater than 8 h for LMX (Panel B).  For all drugs thereafter, 

there was a progressive diminution of the protective effects such that by 48-72 h, loss of colony 

formation was essentially complete. For compound 3 treatments, a visual representation of the 

stained colonies has been included to demonstrate the time-dependent irreversible drug effects 

(Panel D).   

3.3.3 PCFT-selective Transport Characteristics for Compounds 3, 16 and 17.  

   Growth inhibition results (Table 3.1) strongly suggested selective membrane transport by 

PCFT and not RFC for compounds 3, 16 and 17. For further confirmation, we tested these 

compounds (10 µM) as direct competitors for inhibition of PCFT-mediated uptake of [3H]MTX 

(0.5 µM) in R2/PCFT4 cells from pH 5.5 to 7.2, and compared the results to those for PMX and 

PT523, established RFC substrates. A parallel experiment was performed with PC43-10 cells to 

assess the inhibitory effects of compounds 3, 16 and 17 (10 µM) on RFC-mediated [3H]MTX 

uptake (at pH 7.2), compared to other established RFC transport substrates. As shown in (Figure 

3.6, Panel A), with R2/PCFT4 cells, compounds 3, 16 and 17 were potent inhibitors of PCFT 

transport, only slightly less so than PMX and with substantially increased potencies at pH values 

less than 7.2. As expected (Zhao and Goldman, 2007), PT523 did not inhibit [3H]MTX uptake at 

any pH for R2/PCFT4 cells. For RFC-expressing PC43-10 cells at pH 7.2, PT523, PMX, RTX, 

LMX, and 5-CHO-THF all potently inhibited [3H]MTX transport (Figure 3.6, Panel B).  

However, compounds 3, 16 and 17 were essentially inert as inhibitors of RFC. 
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Figure 3.5 Time dependence for loss of clonogenicity in R2/PCFT4 cells treated with PMX, 
LMX and compound 3. R2/PCFT4 cells were plated into 60 mm dishes at 500 cells per dish 
and allowed to adhere for 48 h, after which cells were treated with or without 1 µM drug in the 
presence or absence of adenosine (60 µM) and thymidine (10 µM) for 2, 4, 8, 24 and 48 h.  
Following drug treatment, cells were washed with DPBS and resuspended with drug-free media 
with or without adenosine (60 µM) and thymidine (10 µM) protection. Colonies were 
enumerated after 10 days and results are presented as a percent of vehicle control. Panel A, 
PMX. Panel B, LMX. Panel C, Compound 3. Panel D, Representative image of dishes that were 
counted to produce Panel C. Results are presented as mean values ± standard errors from 3 
experiments. Abbreviations: Ade, adenosine; Thd, thymidine. 
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Figure 3.6 Competitive inhibition of PCFT and RFC transport of [3H]MTX. Panel A, 
R2/PCFT4 cells ectopically expressing PCFT but no FR or RFC were assayed for [3H]MTX 
transport in the presence of 10 µM PMX, compounds 3, 16, 17 and PT523 at pH 5.5-7.2. Panel 
B, R2 cells (vector) expressing no RFC, PCFT or FR and PC43-10 cells expressing RFC but no 
PCFT or FR were assayed for [3H]MTX transport in the presence of 10 µM compounds 3, 16, 
17, PT523, PMX, RTX, LMX, or 5-CHO-THF at pH 7.2. Results are presented as mean values ± 
standard errors from >3 experiments. 
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We used Dixon analysis at pH 5.5 and pH 6.8 with R2/PCFT4 cells and [3H]MTX to 

calculate Kis for PCFT competitors including compounds 3, 16, 17, PMX and LMX (Table 3.2). 

Transport of 0.5 µM [3H]MTX was measured over a range of inhibitor concentrations. The 

relative affinities of our lead compounds to PCFT were similar to PMX and are as follows: PMX 

< 17 < 16 < 3 < LMX. K i values increase 14-18 fold at pH 6.8 for all compounds except LMX 

which had a 50-fold increased Ki at pH 6.8. For PMX, the Kis closely approximated the Kts 

recorded with [3H]PMX.  

   To confirm that compounds 3, 16, and 17 are transported by PCFT, electrophysiological 

studies were performed in Xenopus oocytes injected with PCFT cRNA. Uptake was assessed in 

oocytes clamped to -90 mV at a bath pH of 5.5. A substrate concentration of 5 µM was used, 

which is saturating for 5-CHO-THF and PMX. These experiments show that the currents induced 

by compounds 3, 16 and 17 were comparable to that produced by 5-CHO-THF (Figure 3.7). 

3.3.4 Identification of de novo Purine Nucleotide Biosynthesis and GARFTase as Primary 

Cellular Targets for Compounds 3, 16 and 17.  

  Our protection studies further identified de novo purine nucleotide biosynthesis as the 

primary targeted pathway following PCFT transport of the 6-substituted pyrrolo[2,3-

d]pyrimidine –benzoyl (3) and –thienoyl antifolates (16 and 17). To confirm the inhibition of 

purine nucleotide biosynthesis by compounds 3, 16 and 17, we measured ATP and GTP pools by 

HPLC in R2/PCFT4 cells for compounds 3, 16 and 17. For compound 3, cells were treated with 

increasing concentrations for 24 h and results were compared to those of LMX; results are shown 

as a percentage of control ATP and GTP levels (Figure 3.8, Panel A). Additionally, cells were 

treated with 1 µM of 16 and 17 for 24 h at pH 6.8, and results were compared to those for LMX 

and PMX (both at 1 µM) (Figure 3.8, Panel B). GTP and ATP pools 
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Figure 3.7 Electrophysiology studies of antifolate transport by PCFT in Xenopus oocytes. 
Substrate-induced currents (nA) were recorded in individual oocytes injected with wild type 
PCFT and voltage clamped to a holding potential (Vh) of -90 mV. Oocytes were perfused with 
ND90 solution at pH 5.5 with 5-CHO-THF followed by compounds 3, 17 and 16. For all 
substrates, concentrations were maintained at a level of 5 µM. 
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Figure 3.8 Intracellular ATP levels and in situ GARFTase inhibition in R2/PCFT4 cells 
treated with compounds 3, 16, 17, LMX, and PMX. Panel A, for analysis of ATP levels, cells 
were treated with various concentrations of compounds 3 or LMX for 24 h. Nucleotides were 
extracted and ATP pools were determined by a modification of the HPLC method of Huang et al. 
(2003a). Details are provided in the Materials and Methods. Panel B, R2/PCFT4 cells were 
treated with 1 µM 17, 16, PMX, or LMX, or solvent (0.5% DMSO for 3, 16 and 17, H2O for 
PMX and LMX) for 24 h. Cells were washed, and nucleotides were extracted and analyzed by 
HPLC. Results are shown for percentage control ATP after the drug treatments. Panel C, 
GARFTase activity and inhibition were evaluated in situ with R2/PCFT4 cells. Accumulation of 
[14C]formyl GAR from [14C]glycine was measured in R2/PCFT4 cells treated with the 
antifolates. The production of [14C]formyl GAR was calculated as a percent of vehicle control 
over a range of antifolate concentrations. Results are presented as the mean values (standard 
errors from 3 experiments. Methodologic details are described in the Experimental Procedures 
section. IC50s were as follows: 0.97 nM, 3; 0.69 nM, 16; 1.96 nM, 17; 31.5 nM LMX; and 7.3 
nM, PMX. 



www.manaraa.com

 

 

105

were severely depleted (approximately 50 and 75%, respectively) during a 24 h exposure of 

R2/PCFT4 cells to 1 µM of either compound 3 or LMX. For ATP pools, IC50 values of 58 and 

166 nM were measured for compound 3 and LMX, respectively (Figure 3.8, Panel A). For GTP 

pools, IC50 values were 441 and 579 nM, respectively (data not shown). Treatment of R2/PCFT4 

cells with either 1 µM 16 or 17 for 24 h resulted in profound depletion of ATP pools (90%), 

which exceeded the decrease resulting from treatment with LMX (76%). PMX treatment, on the 

other hand only minimally impacted ATP pools (17%) (Figure 3.8, Panel B). Similar results 

were reported by Chen et al. (1998). 

  To confirm GARFTase inhibition and to provide a metabolic “read-out” for PCFT 

transport of compounds 3, 16 and 17 in R2/PCFT4 cells, we used an in situ assay for GARFTase. 

GARFTase catalyzes formylation of the glycine-derived nitrogen of GAR, producing formyl 

GAR with 10-formyl THF as the one-carbon donor. The in situ GARFTase assay measures 

incorporation of [14C]glycine into [14C]formyl GAR in the presence of azaserine (4 µM) 

(Beardsley et al., 1989; Deng et al., 2008).  Modifications were made in the original protocol to 

measure GARFTase inhibition under pH conditions which permitted PCFT transport. Briefly, 

R2/PCFT4 cells were cultured for 48 h in complete folate-free media supplemented with 25 nM 

5-CHO-THF. The 48 h incubation allowed the cells to adhere and the pH of the culture media to 

decrease to ~6.9 accompanying cell growth. Cells were then treated for 15 h with or without a 

range of concentrations of compounds 3, 16 and 17, or with PMX or LMX, after which cells 

were washed, resuspended in complete L-glutamine- and folate-free medium with or without 

drug and then treated with azaserine for 30 min, after which L-glutamine and [14C]glycine were 

added. After an additional 8 h, cells were washed, proteins were precipitated with TCA, and the 
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supernatants were ether-extracted and fractionated on anion exchange columns so that 

[14C]formyl GAR could be measured and IC50s calculated.  

Our results demonstrate that PMX, LMX, and compounds 3, 16 and 17 all inhibited 

[14C]formyl GAR accumulation in R2/PCFT4 cells at ~pH 6.9 when PCFT is the sole mode of 

antifolate drug delivery (Figure 3.8, Panel C). Compound 16 was by far the most potent of these 

drugs with an impressive IC50 for GARFTase inhibition of 0.69 nM. Relative drug sensitivities 

for the other lead compounds and classic antifolates were as follows, IC50s (in nM) are in 

parentheses: 3 (0.97) > 17 (1.96) > PMX (7.3) > LMX (31.5). The most potent inhibitors were 

compounds 3 and 16, suggesting that the chain length of the bridge region is an important 

determinant of GARFTase inhibition regardless of whether the compound is a pyrrolo[2,3-

d]pyrimidine –benzoyl or –thienoyl. GARFTase inhibition is the ultimate determinant of growth 

inhibition, with the IC50s following the same trend, 16  > 3  > 17  (Table 3.1). 

3.4 Discussion. 

Chemotherapy activity of classic antifolates has traditionally been interpreted in terms of 

their active membrane transport into tumors by RFC (Matherly et al., 2007). Furthermore, 

impaired membrane transport due to loss or mutations of RFC was reported to result in antifolate 

resistance (Assaraf, 2007; Matherly et al., 2007; Zhao and Goldman, 2003). However, after 

reports of a novel low-pH transporter termed PCFT (Nakai et al., 2007; Qiu et al., 2006; Zhao 

and Goldman, 2007) and the recognition that PCFT is expressed and functional in human solid 

tumors (Chapter 2) and can efficiently transport cytotoxic antifolates, such as MTX, at pH values 

approximating those of solid tumors (Chapter 2), it becomes necessary to examine the possibility 

that PCFT could represent an important mode of chemotherapy drug transport.  
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Because most cultured cells endogenously express more than one folate transport system 

(Chapter 2), to explore the role of PCFT in delivery of cytotoxic antifolates, we engineered the 

R2/PCFT4 CHO subline from PCFT-, RFC-, and FR-null R2 cells to express PCFT without 

either RFC or FRs. R2/PCFT4 cells exhibited optimal transport activity at acidic over neutral 

pHs, reflecting high-affinity transport of substrates with decreasing pH. The impact of pH on 

transport by PCFT was substantially different between (anti)folate substrates. By growth 

inhibition assays, R2/PCFT4 cells were sensitive to classic antifolates, including MTX, RTX, 

PMX, and LMX, suggesting their membrane transport by PCFT; PMX was the most active 

transport substrate and neither GW1843U89 nor PT523 was growth inhibitory. Although PCFT 

exhibits limited transport at neutral pH typical of culture media, transport of these cytotoxic 

antifolates by PCFT was enhanced by the progressively decreasing pH that accompanies cell 

outgrowth. PMX is a 5-substituted pyrrolo[2,3-d]pyrimidine benzoyl analog and is the best 

substrate previously described for PCFT (Zhao and Goldman, 2007). Because PMX was a potent 

inhibitor of R2/PCFT4 cell growth, we compared the growth inhibitory effects of a number of 

structurally related 6-substituted pyrrolo or thieno[2,3-d]pyrimidine benzoyl or thienoyl 

antifolates with bridge lengths from one to eight methylenes (depending on the drug series) as 

inhibitors of R2/PCFT4 cell proliferation.  

The 6-substituted pyrrolo[2,3-d]pyrimidine with a –benzoyl B ring and three methylenes 

(compound 3) or a -thienoyl B ring and  three or four methylenes (compounds 16 and 17, 

respectively) were potent inhibitors of R2/PCFT4 cell growth or clonogenicity. Additionally, 

these compounds were essentially inert toward RFC-expressing PC43-10 cells, thus establishing 

these analogs as our lead compounds for future studies. It is noteworthy that compounds 3, 16 

and 17 all selectively inhibited transport of [3H]MTX by PCFT with potencies only slightly less 
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than that for PMX, as reflected in Ki  values, and with nearly identical pH dependencies. After 

microinjection of PCFT cRNA into X. laevis oocytes, perfusion with a saturating concentration 

of compounds 3, 16 and 17 elicited a current, confirming that these compounds are 

electrogenically transported by PCFT. Collectively, these results establish that the cytotoxic 6-

substituted pyrrolo[2,3-d]pyrimidine –benzoyl compound 3 and –thienoyl compounds 16 and 17 

are bona fide transport substrates for PCFT, essentially on par with PMX. However, unlike 

PMX, compounds 3, 16, and 17 have nominal transport activity with RFC.  

Compound 3 was previously reported to be cytotoxic toward cells that express high levels 

of FRα, reflecting inhibition of GARFTase, the trifunctional enzyme that catalyzes the second, 

third, and fifth reactions of de novo purine nucleotide biosynthesis, including the first folate-

dependent step (Deng et al., 2008). Consistent with primary inhibition of GARFTase after 

transport by PCFT, both adenosine and AICA protected R2/PCFT4 cells from growth inhibition 

by compounds 3, 16 and 17. By an in situ GARFTase assay, which measures [14C]glycine 

incorporation into formyl GAR, compounds 3, 16 and 17  were disproportionately inhibitory, 

with IC50 values less than 1 nM, far lower than the IC50 for LMX. Although PMX is primarily an 

inhibitor of TS and was recently reported to inhibit AICARFTase in CCRF-CEM cells (Racanelli 

et al., 2009), in R2/PCFT4 CHO cells, appreciable GARFTase inhibition was detected, albeit less 

than that for compounds 3, 16 and 17.  

These results describe the first PCFT-selective antifolates and establish that PCFT is a 

surprisingly efficient means of cytotoxic drug delivery. The much higher concentrations of 

compounds 3, 16 and 17 needed to inhibit colony formation and cell proliferation, or to 

significantly suppress ATP/GTP pools versus those required to inhibit GARFTase in cells, must 

reflect the nature of the enzyme target and requirement for sustained inhibition of GARFTase 
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and de novo purine biosynthesis for cell killing. Indeed, sustained exposures to GARFTase 

inhibitors were required to irreversibly inhibit colony formation of R2/PCFT4 cells, although an 

analogous time-dependence was obtained with PMX. Similar results were previously reported 

when comparing effects on clonogenicity of GARFTase inhibition by LMX versus TS inhibition 

by RTX in WiDr colonic carcinoma cells (Smith et al., 1993). The higher concentrations of LMX 

over compound 3 needed to inhibit GARFTase in cells relative to those required to manifest 

cytotoxicity provide further evidence that GARFTase inhibition is not limiting to cell killing. 

The decreased GARFTase inhibition for LMX in R2/PCFT4 cells probably reflects its reduced 

transport by PCFT compared with compound 3, although factors such as differences in the extent 

of polyglutamate synthesis may also contribute. High-level substrate activity was previously 

reported for compound 3 for human FPGS (Gangjee et al., 2004); however compounds 16 and 17 

have not been directly tested. The delay in irreversible drug effects upon inhibition of 

GARFTase may reflect salvage of purines generated from breakdown of nucleic acids (Bronder 

and Moran, 2002; Smith et al., 1993). Accordingly, the delay for irreversible cell death by 

GARFTase inhibitors may be substantially shortened in cells that have defects in purine salvage, 

increasing dependence on de novo purine synthesis. For instance, deletions of MTAP have been 

described in human malignancies, including ~70% of pleural mesotheliomas (Illei et al., 2003) 

and 38% of NSCLC (Schmid et al., 1998). On this basis, GARFTase inhibitors such as 

compounds 3, 16, and 17 may show far greater potencies in MTAP-deficient tumors, especially 

if there are high levels of PCFT.  

It will be interesting to determine whether the ATP depletion caused by GARFTase 

inhibitors will lead to an increase in NRF-1, upregulation of PCFT transcription and enhanced 
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activity of the drug in tumor cells. Conversely, there could be an upregulation of de novo purine 

biosynthesis enzyme expression and subsequent resistance to GARFTase inhibitors.  

Finally, the present results, combined with earlier studies of 6-substituted pyrrolo- and 

thieno[2,3-d]pyrimidine antifolates (Deng et al., 2009; Wang et al., 2010) begin to establish a 

structure activity relationship for PCFT-selective antifolates and shed light on the impact of both 

aromatic ring systems and the length of the bridge domain on transport by PCFT versus other 

folate transporters. Thus, antifolates with thieno[2,3-d]pyrimidine and benzoyl rings (designated 

A and B rings, respectively) (Figure 3.1) are effective transport substrates for FRs but not for 

RFC or PCFT, with optimal activity for the 3- and 4-carbon bridge analogs (Deng et al., 2009). 

Replacement of the thieno[2,3-d]pyrimidine A ring with a pyrrolo[2,3-d]pyrimidine system 

favors binding and transport by both PCFT and FRs, regardless of whether the B ring is a 

benzoyl (3) or thiophene (16 and 17). For the pyrrolo[2,3-d]pyrimidine -benzoyl and -thienoyl 

series, decreasing the bridge lengths between the bicyclic scaffold and L-glutamate from 8- to 4-

carbons (4 and 17) substantially increased the antiproliferative activities of the analogs, 

reflecting transport by PCFT. Further decreasing the bridge length of these compounds from 4- 

to 3-carbons (3 and 16) increased drug potencies; however, this appeared to be accompanied by 

some loss of absolute transporter specificity for PCFT over RFC. Decreasing the bridge length to 

1- or 2-carbons caused complete loss of activity.  

In conclusion, we document PCFT-selective transport over RFC for the potent 6 

substituted pyrrolo[2,3-d]pyrimidine -benzoyl and -thienoyl antifolate series, particularly 

compounds 3, 16 and 17. Our results strongly suggest the therapeutic potential of PCFT for 

targeting drugs to tumors. The notion of PCFT drug targeting is appealing given the acidic pH 

optimum for this system and the low pH microenvironment of many solid tumors (Anderson and 
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Thwaites, 2010; Helmlinger et al., 1997; Webb et al., 2011). For drugs such as compounds 3, 16 

and 17 which exhibit PCFT selectivity over RFC, tumor selectivity would be enhanced because 

transport by PCFT would be extensive under the low pH conditions in solid tumors yet should be 

limited at neutral pH typical of most normal tissues. This would result in significantly lower 

toxicity. Although compounds 3, 16 and 17 are also cytotoxic toward FR-expressing cells (Deng 

et al., 2008), given the frequent association of FRs with malignant cells (Chapter 2) (Elnakat and 

Ratnam, 2004), this may serve to broaden potential therapeutic applications of this drug 

platform. Our drug discovery efforts are currently focused toward identifying PCFT-specific 

agents without transport by FR or RFC to test this. Validation of these concepts will undoubtedly 

depend on establishing cytotoxicity of 3, 16 and 17 in human solid tumor cell lines with 

endogenous levels of PCFT (~10 fold lower than levels found in R2/PCFT4 cells) delivered at 

pHs that resemble the solid tumor microenvironment (pH 6.8), determining whether these novel 

analogs are polyglutamylated and establishing their affinities for FPGS, identifying the effects of 

the analogs on the cell cycle and the mechanisms of cell death. Further, it will be important to 

establish in vivo activity of the drugs against transplanted tumors that express PCFT as the sole 

means of drug delivery and also determining the impact of functional RFC on the pharmacology 

of these drugs. These questions will be studied in Chapters 4 and 5 of this dissertation.  
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CHAPTER 4 
 

SOLID TUMOR TARGETING BY PCFT-MEDIATED UPTAKE OF NOVEL ANTIFOLATES 
 

4.1 Introduction. 

PCFT transport function may be enhanced in many solid tumors by the acidic pH of the 

tumor microenvironment, which has been reported to reach as low as pH 6.2 to 6.8 (Helmlinger 

et al., 1997; Webb et al., 2011). Intracellular pH is normally alkaline, which creates a substantial 

transmembrane pH gradient directed intracellularly (Fais et al., 2007). Clearly, harnessing this 

proton-motive gradient to transport cytotoxic antifolates into tumor cells by PCFT offers a 

uniquely attractive mechanism of therapeutic targeting solid tumors. Importantly, as described in 

Chapter 2, PCFT is expressed and is functional in a wide range of human solid tumor cell lines. 

PCFT expression was confirmed in primary human tumors. For tumor targeting of cytotoxic 

drugs via FR or PCFT, ideally, therapeutic agents are specifically transported by FRs and/or 

PCFT and not by RFC (Deng et al., 2008; Deng et al., 2009; Gibbs et al., 2005; Hilgenbrink and 

Low, 2005; Kugel Desmoulin et al., 2010b; Salazar and Ratnam, 2007; Wang et al., 2010). This 

strategy is necessary because antifolate membrane transport by RFC precludes tumor selectivity, 

in that RFC is expressed in both normal and tumor cells, and RFC transport is optimal at neutral 

pH characterizing most normal tissues (Matherly et al., 2007; Zhao and Goldman, 2003). Indeed, 

a major obstacle in implementing this approach has been a lack of FR- or PCFT-selective agents, 

since all of the clinically useful antifolates with significant FR- and PCFT substrate activity (e.g., 

MTX and PMX) are also transported by RFC (Matherly et al., 2007). In Chapter 3, we described 

a novel 6-substituted pyrrolo[2,3-d]pyrimidine antifolate with a thienoyl-for-benzoyl B ring 

replacement and a bridge length of four carbons (compound 17) (Figure 3.1, Panel C) (Kugel 

Desmoulin et al., 2011; Wang et al., 2010). Cellular uptake of compound 17 by FRα and PCFT 
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was substantial in the absence of its membrane transport by RFC, resulting in potent antitumor 

activity in vitro because of its inhibition of GARFTase in de novo purine nucleotide biosynthesis.  

This chapter will focus on directly testing the capacity of PCFT to deliver a cytotoxic 

dose of compound 17 under conditions relevant to the solid tumor microenvironment. 

Characteristics of drug transport, polyglutamylation, GARFTase inhibition, ATP levels, cell 

cycle analysis and mechanism of cell death will be evaluated in human solid tumor cell lines that 

have modest endogenous levels of PCFT. Drug treatments will be studied at pHs that are similar 

to those surrounding many solid tumors (pH 6.8), or performed in vivo where a true acidic tumor 

microenvironment can be created by the growing tumor (Raghunand et al., 1999). This chapter 

describes such experiments with compound 17 to establish the feasibility of selectively targeting 

chemotherapy to human solid tumors based upon drug membrane transport by PCFT. The 

majority of this work has been published (Kugel Desmoulin et al., 2011). 

4.2 Materials and Methods. 

4.2.1 Chemicals and Reagents. 

[3’,5’,7-3H]MTX (20 Ci/mmol), [3H]PMX (2.5 Ci/mmol), and custom-radiolabeled 

[3H]compound 17 (1.3 Ci/mmol) were purchased from Moravek Biochemicals (Brea, CA). 

(6R,S)-5-formyl tetrahydrofolate (5-CHO-THF) was provided by the Drug Development Branch, 

National Cancer Institute (Bethesda, MD). PMX [N-(4-[2-(2-amino-3,4-dihydro-4-oxo-7H-

pyrrolo[2,3-d]pyrimidin-5-yl)ethyl] benzoyl)-L-glutamic acid] (Alimta) was provided by Eli 

Lilly  and Co. (Indianapolis, IN). Synthesis and properties of the 6-substituted pyrrolo[2,3-

d]pyrimidine thienoyl antifolate compound 17 were described previously (Kugel Desmoulin et 

al., 2011; Wang et al., 2010). Other chemicals were obtained from commercial sources in the 

highest available purities. 
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4.2.2 Cell Culture. 

To determine the efficacies of the novel antifolates in human solid tumor cell lines, RFC-

/PCFT-null HeLa (R1-11) sublines were obtained from Dr. I. David Goldman (Albert Einstein 

School of Medicine, Bronx, NY). R1-11-RFC6 and R1-11-PCFT4 cells were derived from R1-

11 cells by stable transfection with HA-tagged pZeoSV2(+)-RFC and pZeoSV2(+)-PCFT 

constructs, respectively. Cells were maintained in regular RPMI 1640 medium supplemented 

with 10% fetal bovine serum (Invitrogen, Carlsbad, CA), 100 units/mL penicillin, 100 µg/mL 

streptomycin, 2 mM L-glutamine and 0.1 mg/mL zeocin (Invitrogen, Carlsbad, CA)  at 37˚C 

with 5% CO2. Characteristics of the HeLa sublines were described previously (Zhao et al., 2008). 

Additionally, HepG2 cells were purchased from ATCC and were routinely grown in Eagle’s 

MEM (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (Thermo Fisher 

Scientific, Waltham, MA), 100 units/mL penicillin, 100 µg/mL streptomycin and 2 mM L-

glutamine. 

4.2.3 Real-time RT-PCR Analysis of RFC, FRα, and PCFT Transcripts.  

For characterizing human PCFT, RFC and FRα transcript levels, RNAs were isolated using 

TRIzol reagent (Invitrogen, Carlsbad, CA) according to the manufacturers instructions, from  the 

HepG2 human hepatocellular carcinoma cell line, the IGROV1 human ovarian adenocarcinoma 

cell line, engineered R1-11 HeLa sublines (R1-11 mock, R1-11-RFC6, and R1-11-PCFT4) and 

in vivo HepG2 tumor samples (see section 4.2.10 for trial information). For isolation of RNA 

from HepG2 tumor xenografts, dry ice was used to ensure that the snap-frozen tumors remained 

cold to prevent RNase degradation of tumor RNA. Tumors were cut into thin sections using an 

ice cold razor blade. Tumor fragments were transferred into a microcentrifuge tube containing 1 

mL TRIzol (Invitrogen) and quickly homogenized using a Kontes pellet pestle motor and 



www.manaraa.com

 

 

115

RNAase-free pellet pestle (Sigma-Aldrich, St. Louis, MO). The tumor fragments, resuspended in 

TRIzol (Invitrogen), were vortexed, pelleted by microcentrifugation and homogenized until all 

solid tumor fragments were solubilized. The remaining protocol for RNA isolation was the same 

as above. cDNAs for all samples were synthesized using random hexamers, RNase inhibitor, and 

MuLV reverse transcriptase and purified with the QIAquick PCR Purification Kit (Qiagen). 

Real-time RT-PCR was performed on a Roche LightCycler 1.2 (Roche, Indianapolis, IN) with  

gene-specific primers (Table 2.1) and FastStart DNA Master SYBR Green I enzyme reaction 

mix (Roche), as described (Ge et al., 2007). Transcript levels for human PCFT, RFC and FRα 

were normalized to those for GAPDH. External standard curves were constructed for each gene 

of interest using serial dilutions of linearized templates, prepared by amplification from suitable 

cDNA templates, subcloning into a TA-cloning vector (PCR-Topo; Invitrogen), and restriction 

digestions.  

4.2.4 Proliferation and Colony-forming Assays.  

For growth inhibition assays, R1-11-PCFT4, R1-11-RFC6 HeLa, and HepG2 cells were 

cultured in complete folate-free RPMI 1640 medium, pH 7.2, supplemented with 25 nM 5-CHO-

THF, for at least 2 weeks prior to the experiment (folate-depleted). Cells were plated in 96-well 

culture dishes (5000 cells/well; 200 µL/well) in the above medium with a broad concentration 

range of drugs (depending on the compound, drug dilutions were in DMSO or water with 

appropriate vehicle controls); cells were incubated for up to 96 h at 37°C in a CO2 incubator. 

Metabolically active cells (a measure of cell viability) were assayed with CellTiter-Blue™ cell 

viability assay (Promega, Madison, WI) and a fluorescent plate reader (emission at 590 nm, 

excitation at 560 nm) for determining IC50 values, corresponding to drug concentrations that 

result in 50% loss of cell growth. For colony-forming assays, folate-depleted R1-11-PCFT4 cells 
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(500 cells) in log-phase were plated into 60-mm dishes in complete folate-free RPMI 1640 

medium, pH 7.2, supplemented with 25 nM 5-CHO-THF and allowed to adhere for 48 h. Cells 

were then treated with compound 17 or PMX in the above media, supplemented with 25 mM 

PIPES and 25 mM HEPES (complete buffered folate-free RPMI 1640 medium) to maintain the 

pH at 6.8. After 16, 24, or 48 h, cells were rinsed with DPBS, and then incubated in drug-free, 

complete folate-free RPMI 1640 medium, supplemented with 25 nM 5-CHO-THF, pH 7.2. Cells 

were allowed to outgrow for 12 days, at which time the dishes were rinsed with DPBS, 5% TCA, 

and borate buffer (10 mM, pH 8.8), followed by 1% methylene blue (in borate buffer). The 

dishes were again rinsed with borate buffer, and colonies were counted for calculating 

percentage colony formation relative to the DMSO controls. 

4.2.5 Transport Assays.  

For comparison of PCFT transport activities in R2/PCFT4 and R1-11-PCFT4 cells, PCFT 

transport activities in R2/VC, R2/PCFT4, R1-11-mock and R1-11-PCFT4 cells were assessed in 

cell monolayers by measuring uptake of 0.5 µM [3H]MTX at 37˚C for 5 min at pH 7.2 in 

HEPES-buffered saline (20 mM HEPES, 140 mM NaCl, 5 mM KCl, 2 mM MgCl2, and 5 mM 

glucose), or at pH 5.5 in MES-buffered saline  (20 mM MES, 140 mM NaCl, 5 mM KCl, 2 mM 

MgCl2, and 5 mM glucose) (Zhao et al., 2004b). To determine the pH-dependent transport of 

[3H]compound 17 and [3H]PMX (both at 0.25 µM) in R1-11-PCFT4, R1-11-mock, and HepG2 

cells, uptake was assayed at 37°C in cell monolayers over 2 to 30 min at 37°C in complete 

buffered folate-free RPMI 1640 (pH 5.5, 6.8, and 7.2). At the end of the incubations, transport 

was quenched with ice-cold DPBS, cells were washed three times with ice-cold DPBS, and 

cellular proteins were solubilized with 0.5 N NaOH. Levels of drug uptake were expressed as 

picomoles per milligram of protein, calculated from direct measurements of radioactivity and 
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protein contents of cell homogenates. Proteins were quantified using Folin-phenol reagent 

(Lowry et al., 1951). For PCFT transport kinetic analyses, R1-11-PCFT4 cells were grown in 

suspension using spinner flasks at densities of 2 to 5 X 105 cells/mL. Cells were collected by 

centrifugation, washed with DPBS, and suspended (at 1.5 X 107 cells) in 2 mL of transport 

buffer (below) for cellular uptake assays. To determine [3H]compound 17 and [3H]PMX kinetic 

constants for PCFT (Kt and Vmax), initial uptake rates were measured at 37°C over 2 min in 

HEPES-buffered saline at pH 6.8, or in MES-buffered saline at pH 5.5 (Zhao et al., 2004b), 

using substrate concentrations from 0.04 to 5 µM. Kt and Vmax values were determined from 

Lineweaver-Burk plots. 

4.2.6 HPLC Analysis of Polyglutamyl Derivatives of Compound 17 and PMX.  

Folate-depleted R1-11-PCFT4 and HepG2 cells were grown in complete folate-free 

RPMI 1640 medium, supplemented with 25 nM 5-CHO-THF. Cells were washed with DPBS 

and incubated in complete buffered folate-free RPMI 1640 medium, pH 6.8, with 1 µM 

[3H]compound 17 or [3H]PMX at 37°C in the presence of 60 µM adenosine, or 60 µM adenosine 

plus 10 µM thymidine, respectively. After 16 h, cells were washed three times with ice-cold 

DPBS, then scraped mechanically into 5 mL of ice cold DPBS, pelleted, and flash-frozen. The 

cell pellets were resuspended into 0.5 mL of 50 mM sodium phosphate buffer, pH 6.0, and 100 

mM 2-mercaptoethanol, including unlabeled compound 17 (or PMX) and MTX–diglutamate, –

triglutamate, and –tetraglutamate standards (Schircks Laboratories, Jona, Switzerland) (50 µM 

each). A portion (50 µL) was used to determine total [3H]compound 17 or PMX (in picomoles 

per milligram of protein). Proteins were measured by the Bio-Rad protein assay (Bio-Rad 

Laboratories, Richmond, CA). The remaining extract was boiled (10 min), the supernatant 

containing radiolabeled compound 17 (or PMX) and its metabolites was centrifuged, then (250 
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µL) injected into a Waters 4 µm Nova-Pak C-18 column (3.9 X 150 mm) with a Nova-Pak 4 µm 

C-18 guard column. A Varian 9012 ternary gradient-programmable pump was used for gradient 

development, and a 9050 Varian UV/Vis detector set to 313 nm was used for detection of 

compound 17, PMX, or MTX polyglutamate standards. HPLC analysis involved a binary 

gradient. Mobile phase A consisted of 100 mM sodium acetate at pH 5.5; mobile phase B 

consisted of 100% acetonitrile. The flow rate was set at 1.6 mL/min. The gradient consisted of 

100% A from 0 to 5 min, then 85% A/15% B from 5 to 27.5 min. Fractions were mechanically 

collected every min for the first 10 min and then every 10 s for the duration of the run. 

Radioactivity of the fractions was measured with a scintillation counter. Intracellular levels of 

radiolabeled compounds are expressed as picomoles per milligram of protein, based on 

calculated percentages in the peaks from the HPLC chromatogram and total picomoles per 

milligram of cellular [3H]antifolate. To confirm the identities of the early-eluting peaks as 

polyglutamate metabolites of compound 17, samples were hydrolyzed to their parent drug forms 

by an overnight treatment at 32°C with a preparation of partially purified chicken pancreas 

conjugase in 0.5 mL of 0.1 M sodium borate, pH 7.8, containing 10 mM 2-mercaptoethanol 

(Matherly et al., 1985). Samples were deproteinized by boiling (5 min), then analyzed by HPLC. 

4.2.7 In situ GARFTase Enzyme Inhibition Assay. 

Incorporation of [14C(U)]glycine into [14C]formyl GAR as an in situ measure of 

endogenous GARFTase activity in folate-depleted R1-11-PCFT4 cells at pH 6.8 was performed 

using a modification of published methods (Beardsley et al., 1989; Deng et al., 2008; Kugel 

Desmoulin et al., 2010b). For these experiments, R1-11-PCFT4 cells were seeded in 5 mL of 

complete folate-free RPMI 1640 medium plus 25 nM 5-CHO-THF in 60 mm dishes and allowed 

to adhere overnight. Cells were washed twice with DPBS and resuspended in 5 mL of complete 
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buffered folate-free RPMI 1640 medium, pH 6.8, and 25 nM 5-CHO-THF. Antifolate inhibitor 

or an equivalent amount of vehicle (e.g., DMSO) (“control”) was added to the culture medium, 

and the cells were incubated for another 16 h. Cells were washed twice with DPBS and 

resuspended in 5 mL of complete folate-free, L-glutamine-free RPMI 1640 medium/10% dFBS 

plus 25 mM PIPES/25 mM HEPES, pH 6.8, and 25 nM 5-CHO-THF, with or without 0.5 to 100 

nM antifolate and azaserine (final concentration, 4 µM), and incubated for 30 min. L-Glutamine 

(final concentration, 2 mM) and [14C]glycine (final specific activity, 0.1 mCi/L) were added, 

followed by incubation at 37°C for 8 h, after which time cells were washed three times with ice-

cold DPBS and trypsinized. Cell pellets were suspended in 2 mL of 5% TCA at 0°C. Cell debris 

was removed by centrifugation; samples were solubilized in 0.5 N NaOH and assayed for protein 

contents (Lowry et al., 1951). The supernatants were extracted twice with 2 mL of ice-cold ether. 

The aqueous layer was passed through a 1 cm column of AG1x8 (chloride form, 100–200 mesh) 

(BioRad Laboratories, Hercules, CA), washed with 10 mL of 0.5 N formic acid, followed by 10 

mL of 4 N formic acid, and eluted with 8 mL of 1 N HCl solution. The elutants were collected as 

1 mL fractions and determined for radioactivity. 

4.2.8 Determination of Intracellular ATP levels.  

For analysis of ATP levels after antifolate treatments, R1-11-PCFT4 cells were seeded in 

10 mL of complete buffered folate-free RPMI 1640 medium, pH 6.8, and 25 nM 5-CHO-THF. 

After 24 h, 10 µM compound 17 or DMSO (final concentration, 0.5%) (control) was added to the 

culture medium. Cells were incubated for an additional 24 to 72 h, after which they were 

trypsinized and washed twice with ice-cold DPBS. Nucleotides were extracted and ATP levels 

quantitated by HPLC exactly as described in Chapter 3 (Kugel Desmoulin et al., 2010b). 

4.2.9 Assessment of Apoptosis and Cell Cycle Distribution.   
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R1-11-PCFT4 cells were treated with 10 µM compound 17 for 48 h at pH 6.8 in complete 

buffered folate-free RPMI 1640 medium, pH 6.8, and 25 nM 5-CHO-THF. Cells were 

trypsinized, pelleted, and washed once with ice-cold DPBS. Samples were divided so that the 

cell cycle profile and apoptosis analysis could be performed on the same sample. The amount of 

apoptosis was measured by staining cells with fluorescein isothiocyanate (FITC)-conjugated 

annexin V and propidium iodide (PI) with the apoptotic cells determined using the CELL LAB 

ApoScreen Annexin V-FITC Apoptosis Kit (Beckman Coulter, Fullerton, CA), as recommended 

by the manufacturer. Cells were analyzed for the presence of viable (annexin V-and PI-), early 

apoptotic (annexin V+and PI-), and late apoptotic/necrotic (annexin V+ and PI-) cells by flow 

cytometry. To determine compound 17 concentration-dependent effects on cell cycle 

progression, R1-11-PCFT4 cells (106) were treated with 0, 0.5, 1, 5, and 10 µM compound 17 in 

complete buffered folate-free RPMI 1640 medium, pH 6.8, and 25 nM 5-CHO-THF for 48 h. 

Cells (106) were fixed in ethanol (at least 1 h), then stained by resuspension in 0.5 mL of DPBS 

containing 50 µg/mL PI and 100 µg/mL RNase type I-A (Sigma Aldrich, St. Louis, MO). The 

cells were analyzed by flow cytometry for determining the percentage of cells in each phase of 

the cell cycle. Flow cytometry was performed at the Karmanos Cancer Institute Imaging and 

Cytometry Core using the BD FACSCanto II operated with BD FACSDiva software (v6.0) (BD 

Biosciences, San Jose, CA). In each experiment, 2 X104 cells were assessed for apoptosis and 

cell cycle distribution. Data were analyzed with the FlowJo software (ver. 7.6.1; Tree Star, Inc, 

Ashland, OR). 

4.2.10 In vivo Efficacy Study of Compound 17 in HepG2 Xenografts.  

Cultured HepG2 human hepatoma tumor cells were implanted subcutaneously (~107 

cells/flank) to establish a solid tumor xenograft model in female ICR SCID mice (National 
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Institutes of Health DCT/DTP Animal Production Program, Frederick, MD). For the efficacy 

study, mice were 8 weeks old on day 0 (tumor implant) with an average body weight of 17.6 g. 

Mice were provided food and water ad libitum. Study mice were maintained on either a folate 

deficient diet (Harlan-Teklad, Madison, WI) or a folate-replete diet (autoclavable mouse breeder 

diet) starting 16 days before subcutaneous tumor implant to ensure serum folate levels would 

approximate those of humans. Folate serum levels were determined before tumor implantation 

and after the study with a Lactobacillus casei bioassay (Varela-Moreiras and Selhub, 1992). The 

animals were pooled and implanted bilaterally subcutaneously with 30- to 60-mg tumor 

fragments by a 12-gauge trocar and again pooled before unselective distribution to the various 

treatment and control groups. Chemotherapy was begun 4 days after tumor implantation, when 

the number of cells was relatively small (107–108 cells; before the established limit of palpation). 

Tumors were measured with a caliper two or three times weekly. Mice were sacrificed when the 

cumulative tumor burden reached 1500 mg. Tumor weights were estimated from two 

dimensional measurements [i.e., tumor mass (in milligrams) = (ab2)/2, where a and b are the 

tumor length and width in millimeters, respectively]. For calculation of end points, both tumors 

on each mouse were added together, and the total mass per mouse was used. The following 

quantitative end points were used to assess antitumor activities: 1) T/C and T - C (tumor growth 

delay) [where T is the median time in days required for the treatment group tumors to reach a 

predetermined size (e.g., 500 mg) and C is the median time in days for the control group tumors 

to reach the same size; tumor free survivors are excluded from these calculations]; and 2) 

calculation of tumor cell kill [log10 cell kill total (gross) = (T - C)/(3.32)(Td), where (T - C) is the 

tumor growth delay, as described above, and Td is the tumor volume doubling time in days, 

estimated from the best fit straight line from a log-linear growth plot of control group tumors in 
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exponential growth (100- to 800-mg range)]. With the exception of the xenograft model, these 

methods are essentially identical to those described previously (Wang et al., 2010). 

4.3 Results. 

4.3.1 Effects of Compound 17 on Cell Growth Inhibition and Colony Formation in HeLa  

and HepG2 Human Tumor Sublines. 

In Chapter 3, studies established that the novel pyrrolo[2,3-d]pyrimidine thienoyl 

antifolate compound 17 (Figure 3.1 and Table 3.1) was a potent (nanomolar) inhibitor of 

proliferation of a R2/PCFT4 CHO subline engineered to express PCFT in the absence of other 

folate transporters (RFC and FRs) and to inhibit [3H]MTX transport by PCFT (Figure 3.6, Panel 

A). Conversely, the data strongly suggested that compound 17 was not transported by RFC in a 

CHO subline similarly engineered to exclusively express human RFC. To begin to establish the 

therapeutic potential of PCFT as a selective approach for chemotherapy drug delivery to human 

solid tumors, we used isogenic HeLa sublines derived by stable transfections of RFC- and PCFT-

null R1-11 HeLa cells, designated R1-11-PCFT4 (express physiologic levels of PCFT in the 

absence of RFC, as measured by real-time RT-PCR) and R1-11-RFC6 (engineered to express 

RFC without PCFT), (Zhao et al., 2008) (Figure 4.1, Panel A and B). Low levels of FRα were 

detected in all the R1-11 sublines (Panel C). As a tumor prototype with endogenous PCFT 

expression, we used HepG2 cells established from our tumor cell line screen to express 

significant levels of PCFT and RFC (Figure 2.3, Panels A and B) without FRα (expression levels 

for PCFT and RFC in HepG2 cells are compared with those for the R1-11 sublines in Figure 4.1, 

Panel A-C). We measured inhibition of cell proliferation by compound 17 and results were 

compared with those for PMX. PMX inhibited cell growth in both the R1-11-PCFT4 and R1-11-

RFC6 lines with IC50 values (mean ± S.E.M.) of 59.3 ± 7.37 and 81.7 ± 5.49 nM, respectively 
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(Figure 4.2, Panel A), demonstrating its lack of specificity for PCFT over RFC despite its high 

PCFT substrate activity (Kugel Desmoulin et al., 2010b; Zhao et al., 2008). Conversely, 

compound 17 inhibited cell growth in R1-11-PCFT4 cells (IC50, 99.2 ±  20.2 nM) but not R1-11-

RFC6 (Figure 4.2, Panel B), indicating selective PCFT transport. The decreased (~2-fold) 

sensitivity in the R1-11-PCFT4 cells versus R2/PCFT4 CHO cells (Table 3.1) probably reflects 

differences (~10-fold) in PCFT transport activity at pH 5.5 between these engineered sublines 

(Figure 4.1, Panel D). In HepG2 cells, both PMX (IC50, 40.63 ± 4.52 nM) and compound 17 

(IC50, 227.50 ± 8.98 nM) were growth inhibitory (data not shown). The decreased sensitivity to 

compound 17 for HepG2 cells compared with R1-11-PCFT4 cells probably reflects the presence 

of RFC in HepG2 cells. Although not active for transport with compound 17, RFC still transports 

folates and elevates intracellular folate pools, resulting in decreased cytotoxic drug effects on this 

basis (see Chapter 5). Proliferation assays were extended to include colony-forming assays, in 

which R1-11-PCFT4 cells were exposed to a range of concentrations (1–10 µM) of PMX (Figure 

4.2, Panel C) or compound 17 (Panel D) for 16, 24, or 48 h. Drug exposures were performed at 

pH 6.8, after which drugs were removed and colonies allowed to outgrow for 12 days. As an 

inhibitor of colony formation, PMX and compound 17 showed both concentration- and time-

dependence, although this effect was more pronounced for compound 17, and PMX was more 

active at 16 h for the lower drug concentrations. Despite the latter activity, the maximum extent 

of inhibition after 48 h at 10 µM drug was greater for compound 17 (95%) than for PMX (87%). 

Collectively, these results demonstrate that compound 17, like PMX, is cytotoxic toward cells 

that express PCFT, and under acidic conditions (pH 6.8) achievable in solid tumors. Unlike 

PMX, compound 17 is selectively active toward cells expressing PCFT and is inactive toward 

cells expressing exclusively RFC. 
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Figure 4.1 Characterization of folate transporter expression in solid tumor, HeLa, CHO 
sublines and HepG2 in vivo tumor samples. RT-PCR was used to measure: Panel A, PCFT; 
Panel B, RFC; and Panel C, FRα transcript levels. The cell lines included R1-11 sublines, 
IGROV1 and HepG2 cells and HepG2 tumors from the in vivo efficacy trial treated with 
compound 17 or untreated. RNAs were isolated using TRIzol reagent, cDNAs were synthesized 
using random hexamers and RT-PCR was performed using SYBR green and gene-specific 
primers (primer sequences are reported in Table 2.1). Transcript levels were normalized to 
GAPDH. Panel D, PCFT transport activities in R2/VC, R2/PCFT4, R1-11-mock and R1-11-
PCFT4 cells were assessed in cell monolayers by measuring uptake of 0.5 µM [3H]MTX at 37˚C 
for 5 min at pH 5.5 or 7.2 in MES-buffered saline, and at 7.2 in HEPES-buffered saline. 
Internalized [3H]MTX was normalized to total protein. 
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Figure 4.2 Compound 17 and PMX growth inhibition and inhibition of colony formation in 
R1-11 sublines. Panels A and B, Growth inhibition curves for folate-depleted R1-11-PCFT4 and 
-RFC6 cells treated with PMX (Panel A) or compound 17  (Panel B) for 96 h are shown. Panels 
C and D, R1-11-PCFT4 cells were plated in 60 mm dishes at a density of 500 cells per dish and 
allowed to adhere overnight. Cells were treated at pH 6.8 in the presence or absence of different 
concentrations of PMX (Panel C) or compound 17 (Panel D) from 0 to 10 µM for 16, 24 and 48 
h, followed by removal of drug. Plates were scored by counting visible colonies after 12 days (by 
staining with methylene blue) and presented as a percent of vehicle control. 
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4.3.2 Transport Characteristics for [3H]Compound 17 in HeLa R1-11-PCFT4 and HepG2  

Cells. 

To directly measure PCFT membrane transport of the cytotoxic antifolates into HeLa R1-

11-PCFT4 and HepG2 cells, we used radiolabeled compound 17 and PMX. For R1-11-PCFT4 

cells, uptake of [3H]compound 17 (0.25 µM) was time- and pH dependent with maximum drug 

accumulation at pH 5.5 (Figure 4.3, Panels A–C). Uptake in R1-11-PCFT4 cells exceeded that of 

its PCFT-null isogenic counterpart (R1-11-mock transfectant), unequivocally establishing 

transport of compound 17 by PCFT. A modest time-dependent uptake in the PCFT null R1-11-

mock transfected subline was particularly obvious at 30 min and probably reflects the presence 

of low levels of FR in these cells (Figure 4.1, Panel C).  

We compared the uptake of [3H]PMX with that of [3H]compound 17 in HepG2 cells 

(Figure 4.3, Panel D and E). For compound 17, pH-dependent uptake in HepG2 cells showed a 

profile (despite the ~2-fold increased net uptake) similar to that of R1-11-PCFT4 HeLa cells. Net 

uptake of [3H]PMX exceeded that of [3H]compound 17 in HepG2 cells by ~50 to 100% and 

showed a greater uptake fraction at neutral pH, most likely due to the presence of RFC in HepG2 

cells (Figure 4.1, Panel B).  

We measured transport kinetics over 2 min for [3H]compound 17 and [3H]PMX in R1-

11-PCFT4 cells using a range of drug concentrations at pH 5.5 and 6.8 (Table 4.1). The data 

show nearly identical Kt values for compound 17 and PMX at pH 5.5 and only modest (within 

~40%) differences in Vmax. Increases in both Kt (increased ~300- to 400-fold, respectively, 

compared with values at pH 5.5) and Vmax values (~70% increased) were observed at pH 6.8. 

Vmax /Kt ratios for compound 17 and PMX were similar (within ~2-fold) at both pH 5.5 and pH  
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Figure 4.3 pH- and time-dependent transport of compound 17 and PMX into R1-11-PCFT4 
and HepG2 cells. Panels A-D, Direct PCFT transport activity of compound 17 and Panel E, 
PMX in R1-11-PCFT4 (A-C) and HepG2 (D and E) cells was assessed by measuring uptake of 
0.25 µM [3H]compound 17 or [3H]PMX over 2-30 min at 37°C in complete folate-free RPMI 
1640 (pH 5.5, 6.8 and 7.2), supplemented with 10% dFBS, and 25 mM HEPES/25 mM PIPES. 
Internalized [3H]compound 17 and [3H]PMX were normalized to total protein and expressed as 
pmol/mg protein. 
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6.8. These results establish that for both R1-11-PCFT4 and HepG2 cells, compound 17 is an 

excellent substrate for PCFT, essentially equivalent to PMX. 

4.3.3 Polyglutamylation of Compound 17 in R1-11-PCFT4 and HepG2 Cells.  

Polyglutamylation of classic antifolates is a critical factor in drug activity, because these 

conjugated drug forms are retained within cells and they typically inhibit folate-dependent 

enzyme targets to a greater extent than their nonpolyglutamyl forms (Goldman and Matherly, 

1985; Shane, 1989). To assess the extent of this metabolism for compound 17 in R1-11-PCFT4 

and HepG2 cells, cells were treated with 1 µM [3H]compound 17 for 16 h at pH 6.8 in the 

presence of adenosine (60 µM). For HepG2 cells, parallel incubations were performed with 

[3H]PMX [in presence of thymidine (10 µM) and adenosine (60 µM)]. 3H-labeled metabolites 

were extracted and analyzed by reversed-phase HPLC. Figure 4.4 shows HPLC chromatographs 

for compound 17 (Panel A) and PMX (Panel B) in HepG2 cells. Up to five polyglutamyl (PG) 

metabolites of [3H]compound 17 and [3H]PMX (PG2–6) were resolved by HPLC. The identities 

of the peaks were confirmed by comparing elution times with those for MTX polyglutamyl 

standards and by treatment with chicken pancreas conjugase which reverted the majority of the 

polyglutamyl metabolites to the parental drug. The distributions of the individual compound 17 

and PMX drug forms in R1-11-PCFT4 and HepG2 cells are summarized in Table 4.2. Although 

there were differences in the relative amounts of total intracellular compound 17 between the R1-

11-PCFT4 and HepG2 sublines (as expected from the transport results in Figure 4.3), in both 

cases, compound 17 was predominantly polyglutamylated (64 and 84% of the total intracellular 

drug, respectively). For HepG2 cells, the increased accumulation of [3H]compound 17 over that 

of R1-11-PCFT4 cells was reflected in the polyglutamate levels. Analogous results were 

obtained with [3H]PMX in HepG2 cells, although the net extent of drug uptake and metabolism 
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Figure 4.4 HPLC analysis of polyglutamyl derivatives of compound 17 in HepG2 cells at 
pH 6.8.  HepG2 cells were treated with 1 µM [3H]compound 17 (Panel A) and 1 µM [3H]PMX 
(Panel B) at pH 6.8 in the presence of adenosine (60 µM) for 16 h. Polyglutamates were 
extracted by boiling in 50 mM phosphate buffer (pH 6.0) containing 100 mM 2-mercaptoethanol 
and separated on a 5 µm Spherisorb C-18 ODS-2 column (4.6 mm x 250mm) with a Nova-Pak 4 
µm C-18 guard column. Fractions were collected and radioactivity was measured. Percent 
monoglutamate and polyglutamate (PG2-6) drug forms were determined by chromatographic 
analysis and the total intracellular radiolabel calculated in units of pmol/mg protein (Table 4.2).  
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of [3H]PMX was elevated over that of [3H]compound 17. Collectively, these results establish 

that, like PMX, compound 17 is an excellent substrate for polyglutamylation under conditions 

(pH 6.8) that favor its membrane transport by PCFT. 

4.3.4 Validation of GARFTase and De novo Purine Nucleotide Biosynthesis as the Primary 

Cellular Targets for Compound 17 in R1-11-PCFT4 Cells.  

In Chapter 3 the principal intracellular target of compound 17 was established in PCFT-

expressing CHO cells as GARFTase, the first folate-dependent enzyme in de novo purine 

nucleotide biosynthesis (Wang et al., 2010). To confirm this result in R1-11-PCFT4 HeLa cells 

under acidic conditions (pH 6.8) that favor PCFT transport, we used an in situ metabolic assay 

that quantifies incorporation of [14C]glycine into [14C]formyl GAR as a measure of GARFTase 

inhibition. Results were compared with those of PMX, an established GARFTase inhibitor, along 

with its documented effects on TS (Chattopadhyay et al., 2007) and AICARFTase (Racanelli et 

al., 2009) (Figure 4.5, Panel A). IC50 values for GARFTase inhibition in R1-11-PCFT4 cells by 

compound 17 and PMX were 43.6 and 69.7 nM, respectively. Although the IC50 for GARFTase 

inhibition by compound 17 closely approximated the IC50 for growth inhibition of R1-11-PCFT4 

cells (Table 3.1), GARFTase inhibition by PMX was incomplete up to 5 µM. Analogous results 

were described for PMX with PCFT-expressing CHO cells (R2/PCFT4) (Chapter 3) (Kugel 

Desmoulin et al., 2010b) and with CCRF-CEM cells by Moran and coworkers (Racanelli et al., 

2009). To confirm that potent inhibition of GARFTase in R1-11-PCFT4 cells by compound 17 

also results in decreased ATP pools, we measured intracellular ATP levels in cells treated with 

10 µM compound 17 for 16, 24 and 48 h under conditions (pH 6.8) analogous to those used for 

our clonogenicity studies (Figure 4.2, Panel D). Compound 17 caused a time-dependent and 

concentration-dependent decrease in cellular ATP levels, such that treatment for 48 h led to an  
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Figure 4.5 in situ GARFTase inhibition and intracellular ATP levels in R1-11-PCFT4 cells 
treated with compound 17 and PMX. Panel A, GARFTase activity and inhibition were 
evaluated in situ with R1-11-PCFT4 cells. R1-11-PCFT4 cells were treated with drug for 16 h at 
pH 6.8 in complete buffered folate-free RPMI 1640 supplemented with 25 nM  5-CHO-THF 
before incubating in the presence of 4 µM azaserine for 30 min, followed by [14C]glycine and L-
glutamine treatment. After 8 h, radioactive metabolites were extracted and fractionated on 1 cm 
columns of AG1x8(Cl-) and the fractions were collected and radioactivity measured. 
Accumulation of [14C]formyl GAR was calculated as a percent of vehicle control over a range of 
antifolate concentrations. Panel B, For analysis of ATP levels, cells were treated with 10 µM 
compound 17 or left untreated (DMSO) for 48 h at pH 6.8. Nucleotides were extracted and ATP 
pools were determined by a modification of the HPLC method of Huang et al. (2003a), as 
previously described (Kugel Desmoulin et al., 2010b). Details are provided in the Materials and 
Methods. 
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88% decrease in ATP pools (Figure 4.5, Panel B). These results demonstrate that PCFT-delivery 

of compound 17 is an efficient mode of drug uptake that effects a potent inhibition of GARFTase 

and ATP depletion in R1-11-PCFT4 cells. 

4.3.5 Effect of Compound 17 on Cell Cycle Progression and Apoptosis Induction in 

R1-11-PCFT4 Cells.  

To determine the impact of GARFTase inhibition and ATP depletion on cell-cycle 

progression, we treated R1-11-PCFT4 cells with compound 17 (10 µM) for 48 h at pH 6.8, along 

with a vehicle control. Cells were fixed, stained with PI, and analyzed for cell cycle distribution 

by flow cytometry. Treatment with 10 µM compound 17 caused an accumulation of cells in S-

phase such that 38.9% of cells were in S-phase, compared with 16.8% of the control (Figure 4.6, 

Panel A and B). When a range of concentrations (0.5, 1, 5, and 10 µM) of compound 17 were 

tested for their abilities to induce S-phase accumulation, we found that maximal arrest was 

achieved at 1 µM. Because treatment with compound 17 (10 µM, 48 h at pH 6.8) causes loss of 

clonogenicity in R1-11-PCFT4 cells (Figure 4.2, Panel D) and a modest increase in the sub-G1 

fraction (Figure 4.6, Panel A and B), we were interested in measuring apoptosis under these 

same conditions using annexin V/PI staining. Results were compared with those for R1-11-

PCFT4 cells treated with etoposide (5 µM) and with a no-drug control. Whereas etoposide 

strongly induced apoptosis (12.2% early apoptotic and 22.3% late apoptotic/necrotic) compared 

with the negative controls (2.9 and 10.3%, respectively), compound 17 was less apoptotic (8.4 

and 15.7%, respectively) (Figure 4.6, Panel C). These results are consistent with previous reports 

that GARFTase inhibitors are distinctly cytotoxic, yet modestly apoptotic (Deng et al., 2008; 

Smith et al., 1993). 
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Figure 4.6 Compound 17 treatment induces an S-phase accumulation, accompanied by a 
modest level of apoptosis in R1-11-PCFT4 cells. Panel A, Representative cell cycle profiles 
were determined in R1-11-PCFT4 cells treated with a range of concentrations of compound 17 
for 48 h by measuring the cellular DNA content with PI staining and flow cytometry. SubG1 
(apoptotic fraction) (white trace), G1 (dark grey trace), S (light grey trace), and G2 (grey trace). 
Panel B, The percentages of cells in each phase of the cell cycle (G1, S, and G2), including those 
in the subG1 fraction for all concentrations of compound 17. Panel C, Pseudo-color dot plots 
show the flow cytometric analysis of cells stained with annexin V-FITC and PI. The percentages 
of viable cells (annexin V-/PI-), early apoptotic cells (annexin V+/PI-), and late 
apoptotic/necrotic cells (annexin V+/PI+) are noted.  As a positive control, cells were treated 
with 5 µM etoposide for 48 h at pH 6.8 to induce apoptosis. 
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4.3.6 In vivo Efficacy Study of Compound 17 Against HepG2 Xenografts.  

As proof of concept that in vivo antitumor efficacy can result from tumor targeting of 

compound 17 via its transport by PCFT, an in vivo efficacy trial was performed with 8-week-old 

female ICR SCID mice implanted with subcutaneous HepG2 tumors that express PCFT and RFC 

but not FRα (Figure 4.1, Panel A). Mice were maintained ad libitum on folate-deficient or 

standard folate-replete diets. Serum folate concentrations were measured in mice after 14 days on 

the folate-deficient diet by an L. casei bioassay; the value was 90.2 nM (median) [range, 79.2–

120.7 nM (n = 3)]. This value slightly exceeds serum folate levels (31 and 35 nM, respectively) 

reported previously in humans (Ganji and Kafai, 2009). With the standard diet, by comparison, 

serum folate was 715.2 nM (median) [range, 652.8–742.8 nM (n = 3)]. For the trial, control and 

drug treatment groups were nonselectively randomized (five mice per group); compound 17 was 

administered intravenously on a schedule of every 4 days for three treatments (180 mg/kg per 

injection) on days 4, 8, and 12 after implantation (total dose 540 mg/kg). Results were compared 

with those for paclitaxel (Taxol; every 2 days for six treatments, 7.5 mg/kg per injection). Mice 

were weighed daily and tumors were measured 2 to 3 times per week. For the mice maintained 

on the folate-deficient diet, appreciable antitumor activity was recorded with compound 17 (T/C 

of 0% on day 21; T - C = 13 days; 1.4 gross log kill) (Table 4.3), exceeding that for paclitaxel 

(T/C = 16%; 0.8 gross log kill). Antitumor drug efficacy for 17 was completely abolished (99% 

T/C) for the standard folate-replete diet. The treatment regimen was well tolerated with dose-

limiting symptoms manifesting as reversible body weight loss for mice maintained on the folate-

deficient diet. Results for the in vivo efficacy experiment shown in Figure 4.7 are summarized in 

Table 4.3. Tumor samples treated with compound 17 and untreated controls were harvested, 

RNA was extracted and PCFT, RFC and FRα transcripts were measured.  
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 Figure 4.7 in vivo efficacy trial of compound 17 in HepG2 xenografts. Female ICR SCID 
mice were maintained on a folate-deficient diet ad libitum.  Human HepG2 tumors were 
implanted bilaterally and mice were non-selectively randomized into 5 mice/group. Compound 
17 [dissolved in 5% ethanol (v/v), 1% Tween-80 (v/v), 0.5% NaHCO3] was administered on a 
Q4dx3 schedule intravenously on days 4, 8, and 12 (indicated with arrows) at 180 
mg/kg/injection.  Taxol (dissolved in water) was administered on a Q2dx6 schedule (7.5 
mg/kg/injection) beginning on day 4. Mice were observed and weighed daily; tumors were 
measured twice per week. For the mice maintained on the folate-deficient diet and treated with 
compound 17, appreciable antitumor activity was recorded (T/C=0%; T-C=13 days; 1.4 gross 
log kill).  
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In vivo passage of HepG2 cells did not change the expression of RFC (Figure 4.1, Panel 

B) or FRα (Panel C) transcripts; PCFT (Panel A) on the other hand increased expression in the in 

vivo environment in both treated and untreated tumor samples, suggesting that tumor cells 

expressing PCFT may be selected for in vivo or that the acidic environment may have induced 

PCFT expression. The results of the in vivo efficacy trial demonstrate potent antitumor activity 

for compound 17 toward subcutaneously engrafted HepG2 tumors associated with significant 

transport by PCFT and a lack of membrane transport by RFC.  

4.4 Discussion.  

This chapter significantly expands upon previous results (Chapter 3) (Anderson and 

Thwaites, 2010; Kugel Desmoulin et al., 2010b; Zhao and Goldman, 2007) suggesting that PCFT 

may be therapeutically exploitable for treating solid tumors. We further show that the novel 6-

substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate compound 17 can be selectively 

transported by PCFT in a pH- and time-dependent manner. The tumor models employed, R1-11-

PCFT4 HeLa and HepG2 cells, express similar levels of PCFT, although they differ in the 

presence of RFC and FRα. The premise behind our drug discovery efforts, exemplified by 

compound 17, is that membrane transport of cytotoxic antifolates is a critical determinant of 

antitumor drug selectivity. Compound 17 is not transported by the ubiquitously expressed RFC 

(Wang et al., 2010). This is particularly important because drugs such as compound 17 that target 

FRα and/or PCFT, yet are not substrates for RFC, have the potential to selectively target tumor 

cells and decrease toxicity to normal tissues. This is a substantial advantage over chemotherapy 

drugs currently in use; indeed, pursuing the development of these novel antifolates could yield a 

new class of clinically relevant antitumor agents. Our previous work used engineered CHO 

models (Chapter 3), as well as KB (nasopharyngeal) and IGROV1 (ovarian) human tumor cells 
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that express FRα and/or PCFT to deliver cytotoxic antifolates, including compound 17, that are 

not substrates for RFC (Deng et al., 2008; Deng et al., 2009; Kugel Desmoulin et al., 2011; 

Wang et al., 2010).  

The present report significantly expands upon this concept by demonstrating exclusive 

transport of compound 17 by PCFT into human tumor cell lines at pH values characterizing the 

tumor microenvironment. For R1-11-PCFT4 and HepG2 cells, after its internalization at pH 6.8, 

compound 17 was extensively polyglutamylated, such that the predominant metabolite was the 

pentaglutamate form (compound 17 conjugated to 4 glutamate residues). Moreover, compound 

17 potently inhibited GARFTase, leading to R1-11-PCFT4 HeLa cell death in vitro and HepG2 

tumor growth delay in vivo.  

Expression of PCFT transcripts and protein in normal human tissues is more restrictive 

than for RFC, high PCFT levels being observed in the liver, kidney, and small intestine and very 

low levels in the bone marrow and colon (Chapter 2 and Kugel Desmoulin et al. (2010a)). This 

pattern of PCFT transcripts was also generally observed in mouse tissues (Qiu et al., 2007). Our 

finding that PCFT transcripts are low in human bone marrow is particularly significant and 

suggests that PCFT-targeted therapeutics may be less marrow toxic than antifolates presently in 

clinical use. The microenvironments for most normal tissues probably exhibit a neutral pH 

(Martin and Jain, 1994), such that even if PCFT is present, the electrochemical proton gradient is 

reduced, leading to less accumulation of PCFT substrates such as compound 17. Conversely, 

RFC would exhibit a far greater activity under these conditions. This, when combined with the 

greater capacity of RFC to transport reduced folates across the cell membrane compared with 

PCFT (Zhao et al., 2008), would result in elevated levels of cellular folates in normal tissues. 

The increased availability of reduced folates would result in competition with internalized 
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antifolates for polyglutamylation and/or for binding to intracellular drug targets (e.g., 

GARFTase), thus protecting normal cells from drug cytotoxicity. Likewise, for PCFT-targeted 

agents in solid tumors, if sufficient RFC were present, enough transport of folates might occur 

even at slightly acidic pH values to decrease drug efficacy on this basis. This implies that the 

ratio of PCFT to RFC in tumors is critical to antitumor activities of PCFT-selective cytotoxic 

antifolates and that MTX-resistant tumors that have substantially lost RFC function may be 

exquisitely sensitive to the effects of PCFT selective drugs such as compounds 16 and 17 

(Chapter 5). Thus, for compound 17 and related agents, tumor selectivity is not only reliant upon 

differential PCFT levels between normal tissues and solid tumors but is also affected by 

interstitial pH and activity of RFC.  

It is interesting that under nearly the same conditions, the IC50 for GARFTase inhibition 

in R1-11-PCFT4 cells by the in situ GARFTase assay is virtually identical to the IC50 for 

inhibition of cell proliferation. This result differs somewhat from our previous finding with an 

analogous 6-substituted pyrrolo[2,3 d]pyrimidine benozyl antifolate compound 3 in CHO cells 

for which the IC50 for GARFTase inhibition was substantially lower, suggesting that sustained 

GARFTase inhibition was necessary to manifest as cytotoxicity (Chapter 3 and Kugel Desmoulin 

et al. (2010b)). This quantitative difference may reflect differences in the size of purine pools 

between the human and hamster sublines such that R1-11-PCFT4 HeLa cells would be more 

sensitive to the inhibition of GARFTase. Of course, other factors could also contribute. For 

instance, differences in drug polyglutamylation and polyglutamate turnover could result in 

disparate potencies for sustained GARFTase inhibition in different cell lines. Finally, our studies 

with compound 17 assess the impact of GARFTase inhibition on ATP levels and the 

mechanism(s) of tumor cell death.  
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Treatment of R1-11-PCFT4 cells with compound 17 substantially reduced ATP levels 

and caused S-phase accumulation. Apoptosis resulting from compound 17 was reduced 

compared with etoposide. This could (at least in part) reflect the requirement of ATP for 

apoptosis, because ATP levels must be maintained above a minimal level for apoptosis induction 

(Tsujimoto, 1997). 

 In conclusion, our in vitro studies suggest the feasibility of using PCFT and the acidic 

tumor microenvironment to selectively deliver a novel PCFT-targeted antifolate to human solid 

tumors endogenously expressing modest levels of PCFT. Our in vivo results with HepG2 tumor 

cells that express only PCFT and RFC provide compelling proof-of-principle validation and 

rationale for developing drugs whose transport by PCFT, but not RFC, allows for GARFTase 

inhibition. 
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CHAPTER 5 
 

THE IMPACT OF RFC FUNCTION ON THE ACTIVITY OF ANTIFOLATES 
SELECTIVELY TRANSPORTED BY PCFT 

 
5.1 Introduction. 

Classic antifolates such as MTX and PMX, like folate cofactors, have minimal lipid 

solubility and therefore require specific transport mechanisms to enter tumor cells. There are 

three primary folate transporters, including RFC, PCFT and FRα (Assaraf, 2007; Goldman et al., 

2010).  RFC is the predominant transport route for the major circulating folate, 5-methylTHF, 

and (6S) 5-CHO-THF in mammalian cells and tissues. RFC also mediates cellular uptake of 

MTX and is essential to MTX antitumor activity (Matherly et al., 2007). Impaired RFC function 

is a major mechanism of MTX resistance in cultured tumor cells selected in vitro (Matherly et 

al., 2007; Zhao and Goldman, 2003) and in murine leukemia cells in vivo (Sirotnak et al., 1981). 

Loss of RFC function in clinical specimens has also been reported (Gorlick et al., 1997; Guo et 

al., 1999; Yang et al., 2003).  RFC transport of cytotoxic antifolates can also be undesirable since 

RFC is ubiquitously expressed and exhibits a high level of activity at the physiological  pH of 

most normal tissues (Matherly et al., 2007). Thus, transport of antifolates by RFC could easily 

preclude tumor selectivity and cause toxicity to normal tissues.  

The novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates with 3- (compound 

16) or 4- (compound 17) carbon bridge lengths (Chapters 3 and 4; Figure 3.1, Panel C) represent 

an entirely new class of antitumor agents that exhibit a lack of significant membrane transport by 

RFC (Chapters 3 and 4) (Kugel Desmoulin et al., 2011; Wang et al., 2010; Wang et al., 2011). 

Cellular uptake of compounds 16 and 17 by PCFT and FRα is efficient and offers a promising 

new strategy for tumor targeting. (Anderson and Thwaites, 2010). Since PCFT functions 

optimally at acidic pHs (Qiu et al., 2006; Umapathy et al., 2007; Zhao et al., 2008), transport of 
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16 and 17 by this mechanism may lead to enhanced tumor selectivity owing to the acidic 

microenvironments of many solid tumors (Anderson and Thwaites, 2010; Helmlinger et al., 

1997; Webb et al., 2011). Following internalization, compound 17 is metabolized to 

polyglutamates (Chapter 4) (Kugel Desmoulin et al., 2011), although this has not been 

previously confirmed for compound 16. Both 16 and 17 inhibit de novo purine nucleotide 

synthesis by targeting the first folate-dependent enzyme, GARFTase, causing a dramatic drop in 

purine nucleotide pools (Chapters 3 and 4) (Kugel Desmoulin et al., 2011; Wang et al., 2010; 

Wang et al., 2011). In the case of compound 17, treatment results in S-phase accumulation and 

cell death, in part by a non-apoptotic mechanism (Kugel Desmoulin et al., 2011). Not 

surprisingly, compounds 16 and 17 are potent inhibitors of tumor cell proliferation both in vitro 

and in vivo (Chapters 3 and 4) (Kugel Desmoulin et al., 2011; Wang et al., 2010; Wang et al., 

2011). 

For agents such as PMX that are excellent substrates for both RFC and PCFT, loss of 

RFC has limited impact on overall activity , since PMX uptake is maintained by PCFT (Zhao et 

al., 2004c; Zhao et al., 2008). Paradoxically, RFC loss has been shown to enhance antitumor 

activity (i.e., collateral sensitivity) of PMX via decreased intracellular THF cofactor pools 

(Chattopadhyay et al., 2007; Chattopadhyay et al., 2006; Zhao et al., 2004c). This response to 

RFC loss can be further impacted by the type and amount of extracellular folate (Chattopadhyay 

et al., 2006; Zhao et al., 2004b; Zhao et al., 2004c). 

An analogous effect may exist for PCFT-selective substrates such as compounds 16 and 

17 (Kugel Desmoulin et al., 2011), although this has never been systematically tested. In this 

chapter, the complex interplay between RFC and extracellular reduced folates is examined. 

Specifically, we investigate the mechanistic ramifications of loss of RFC function toward in vitro 
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and in vivo antitumor efficacies of these novel PCFT-targeted antifolates, including the impact 

on their membrane transport, polyglutamylation, and GARFTase inhibition. The results strongly 

imply that levels of RFC transport in tumors are a critical determinant of drug efficacy for this 

novel class of PCFT-selective antitumor agents.  

5.2 Materials and Methods. 

5.2.1 Chemicals and Reagents. 

[3’,5’,7-3H]MTX (20 Ci/mmol), [3H]PMX (2.5 Ci/mmol), [3’,5’,7,9-3H(N)](6S)5-formyl 

tetrahydrofolate (5-CHO-THF) (16.6 Ci/mmol), and custom-radiolabeled [3H]compound 16 (16 

Ci/mmol) and [3H]compound 17 (1.3 Ci/mmol) were purchased from Moravek Biochemicals 

(Brea, CA). Unlabeled MTX and (6R,S) 5-CHO-THF were provided by the Drug Development 

Branch, National Cancer Institute, Bethesda, MD. Sources of the antifolate drugs were as 

follows. LMX (5,10-dideaza-5,6,7,8-tetrahydrofolate) and PMX [N-(4-[2-(2-amino-3,4-dihydro-

4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl] benzoyl)(4)-L-glutamic acid] (Alimta) were from 

Eli Lilly and Co. (Indianapolis, IN); RTX [N-(5-[N-(3,4-dihydro-2-methyl-4-oxyquinazolin-6-

ylmethyl)-N-methyl-amino]-2-thenoyl)-L-glutamic acid] was obtained from AstraZeneca 

Pharmaceuticals (Maccesfield, Cheshire, England); and Nalpha-(4-amino-4-deoxypteroyl)-Ndelta-

hemiphthaloyl-L-ornithine (PT523) was a gift of Dr. Andre Rosowsky (Boston, MA).  

Restriction and modifying enzymes were purchased from Promega (Madison, WI).  Other 

chemicals were obtained from commercial sources in the highest available purities. Synthesis 

and properties of the 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate compounds 16 

and 17 were previously described (Wang et al., 2010; Wang et al., 2011). 

5.2.2 Cell Culture. 
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HeLa cells were purchased from ATCC (Manassas, VA). RFC-null R5 HeLa cells in 

which RFC is deleted from the genome were selected by high dose MTX and 

ethylmethanesulfonate treatments (Zhao et al., 2004b). R1-11-mock and R1-11-PCFT4 HeLa 

cells were derived from RFC- and PCFT-null R1-11 cells by stable transfection with 

pZeoSV2(+) vector only, or HA-tagged pZeoSV2(+)-PCFT constructs, respectively. 

Characteristics of the R1-11 HeLa sublines were previously described by Zhao et al. (2008) and 

Chapter 4). The R5 and R1-11 sublines were gifts from Dr. I. David Goldman (Albert Einstein 

School of Medicine, Bronx, NY). All cell lines were maintained in regular RPMI 1640 

supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA), 100 units/mL penicillin, 

100 µg/mL streptomycin, and 2 mM L-glutamine at 37˚C with 5% CO2. For many experiments, 

cells were maintained at physiologic folate levels for at least two weeks prior to the experiment. 

These details are listed in the individual sections. 

5.2.3 Preparation of  the RFCHA/pZeoSV2 Construct and Generation of Stable RFC  

Transfectants. 

Full length human RFC was subcloned using BamHI and Xho1 restriction enzymes into 

pZeoSV2(+) (Invitrogen) in-frame with an HA sequence inserted at the C-terminus (hereafter, 

designated RFCHA/pZeoSV2). The plasmid was transformed into XL10-Gold ultracompetent 

cells (Agilent) and selected using low salt (<90 mM) LB agar plates containing 25 µg/mL 

Zeocin. Plasmids were isolated and the WT RFC construct was confirmed by automated DNA 

sequencing by Genewiz Corp. (South Plainfield, NJ).  

R5 cells were transfected with pZeoSV2 vector control or RFCHA/pZeoSV2 WT with 

Lipofectamine 2000 and opti-MEM (Invitrogen). After 24 h, the cells were cultured in the 

presence of zeocin (0.1 mg/mL). Stable clones were selected by plating for individual colonies in 
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the presence of 0.1 mg/mL zeocin. Colonies were isolated, expanded and screened for expression 

of RFCHA protein by real-time RT-PCR, Western blotting and transport assays at pH 7.2 (see 

below). A representative clone (R5-RFC2) was selected for further study. R5 cells transfected 

with empty pZeoSV2 (R5-mock) were also prepared and used as a negative experimental 

control. R5-RFC2 and R5-mock cells were cultured in regular RPMI 1640 supplemented with 

10% fetal bovine serum (Invitrogen, Carlsbad, CA), 100 units/mL penicillin, 100 µg/mL 

streptomycin, and 2 mM L-glutamine with 0.1 mg/mL zeocin. 

5.2.4 Gel Electrophoresis and Western Blotting.  

To characterize PCFT and RFC protein levels in the assorted solid tumor cell lines and 

the R5-RFC transfectants, sucrose gradient-enriched plasma membranes were prepared, exactly 

as described in Chapter 2 (Matherly et al., 1991). Proteins were quantified with Folin-phenol 

reagent (Lowry et al., 1951). Membrane proteins were electrophoresed on 7.5% polyacrylamide 

gels in the presence of SDS (Laemmli, 1970) and electroblotted onto PVDF membranes (Pierce, 

Rockford, IL) (Matsudaira, 1987). For the solid tumor cell lines and RFC clones, 

immunoreactive human PCFT and human RFC proteins were detected on PVDF membranes 

with the PCFT or RFC-specific polyclonal antibodies described in Chapter 2.  An IRDye800CW-

conjugated goat anti-rabbit IgG (Rockland, Gilbertsville, PA) secondary antibody was used. For 

detection of HA-tagged proteins (R5-RFCHA) HA-specific mouse monoclonal antibody 

(Covance, Emeryville, CA) and an IRDye800CW-conjugated goat anti-mouse IgG (Rockland, 

Gilbertsville, PA) secondary antibody were used. Membranes were scanned with the Odyssey® 

Imaging System. PCFT and RFC levels were normalized to Na+/K+ ATPase protein levels 

(mouse antibody from Novus Biologicals, Littleton, CO).   

5.2.5 Transport Assays.  
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To measure the pH-dependent uptake of [3H]compound 16, [3H]compound 17, [3H]PMX 

and [3H]MTX (0.5 µM) in WT and R5 HeLa cells, drug uptake was assayed at 37o C in cell 

monolayers in 60 mm dishes over 2 min at 37°C in 2 mL “anion-free” HEPES-sucrose-Mg+2 

buffer (20 mM HEPES, 235 mM sucrose, pH adjusted to 7.14 with MgO) (AFB) (Wong et al., 

1997) or in MES-buffered saline  (20 mM MES, 140 mM NaCl, 5 mM KCl, 2 mM MgCl2, and 5 

mM glucose) at pH 5.5. In either case, transport fluxes were stopped by aspirating the incubation 

buffer and quenching with excess (>5 mL) ice-cold DPBS, followed by 3 washes with ice-cold 

DPBS. Cellular proteins were solubilized with 0.5 N NaOH and quantified using Folin-phenol 

reagent (Lowry et al., 1951). Levels of drug uptake were expressed as pmol/mg protein, 

calculated from direct measurements of radioactivity with a Beckman Model LS6500 liquid 

scintillation counter (Beckman-Coulter, Fullerton, CA) and protein contents of the cell 

homogenates.  

5.2.6 Real-time RT-PCR Analysis of RFC, FRα, and PCFT Transcripts.  

RNAs were isolated from HeLa, R5 and R5-RFC2 cells using TRIzol reagent 

(Invitrogen). cDNAs were synthesized using random hexamers, RNase inhibitor, and MuLV 

reverse transcriptase and purified with the QIAquick PCR Purification Kit (Qiagen). Real-time 

RT-PCR was performed on a Roche LightCycler 2.1 (Roche, Indianapolis, IN) with  gene-

specific primers and FastStart DNA Master SYBR Green I enzyme reaction mix (Roche), as 

described (Ge et al., 2007). Primers are included in Table 2.1. Transcript levels for RFC were 

normalized to those for GAPDH. External standard curves were constructed for each gene of 

interest using serial dilutions of linearized templates, prepared by amplification from suitable 

cDNA templates, subcloning into a TA-cloning vector (PCR-Topo; Invitrogen), and restriction 

digestions.  
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5.2.7 Cell Proliferation Assays.  

For cell proliferation assays, WT and R5 HeLa sublines were cultured in folate-free 

RPMI 1640 (pH 7.2), supplemented with 10% dialyzed fetal bovine serum (dFBS), 2 mM L-

glutamine and 100 units/mL penicillin 100 µg/mL streptomycin (hereafter, designated complete 

folate-free RPMI 1640 medium), containing 25 nM 5-CHO-THF, for at least 2 weeks prior to 

experiment. For assays of drug inhibitions, the cells were plated in 96 well culture dishes (5000 

cells/well; 200 µL/well) in the above medium with a broad concentration range of drugs 

(depending on the compound, drug dilutions were in DMSO or water with appropriate vehicle 

controls); cells were incubated for up to 96 h at 37oC in a CO2 incubator. Metabolically active 

cells (a measure of cell viability) were assayed with CellTiter-Blue™ cell viability assays 

(Promega, Madison, WI) with a fluorescent plate reader (590 nm emission, 560 nm excitation) 

for determining IC50s, corresponding to drug concentrations that result in 50% loss of cell 

growth. To test the impact of extracellular folates on the collateral sensitivities of 16 and 17 in 

R5 and HeLa cells, some growth inhibition experiments included increasing concentrations (25, 

100, 1000 nM) of 5-CHO-THF. 

5.2.8 Accumulation of [3H]5-CHO-THF.  

WT and R5 HeLa sublines were cultured in complete folate-free RMPI 1640 

supplemented with 0.06 mM adenosine and 0.01 mM thymidine for five days prior to the 

experiment. Cells were treated with 0, 25, 100 and 1000 nM [3H]5-CHO-THF (since [3H] (6S)5-

CHO-THF was diluted with non-radioactive (6R,S)5-CHO-THF for these experiments, the actual 

concentration of (6S) stereoisomer was 12.5, 50, 500 nM, respectively) for four days, followed 

by 3 washes with ice-cold DPBS. 0.06 mM adenosine and 0.01 mM thymidine was added to 

control dishes that had no [3H]5-CHO-THF to maintain cell viability. Cellular proteins were 
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solubilized with 0.5 N NaOH and quantified using Folin-phenol reagent (Lowry et al., 1951). 

Total cellular [3H]5-CHO-THF accumulations were expressed as pmol/mg protein, calculated 

from direct measurements of radioactivity and protein contents of cell homogenates. Since 

[3H](6S)5-CHO-THF was diluted with unlabeled (6R,S)5-CHO-THF, as noted above, for 

purposes of calculating intracellular folate metabolites only the unlabeled (6S) isomer was 

considered. To measure the impact of the PCFT-targeted therapeutics 16 and 17 on [3H]5-CHO-

THF accumulations, some experiments analyzed the uptake of 25 nM [3H]5-CHO-THF in the 

presence of increasing concentrations (0-1000 nM) of compounds 16 and 17 in complete folate-

free RPMI 1640 supplemented with 0.06 mM adenosine. 

5.2.9 Measurement of Compound 16 and Compound 17 Polyglutamylation.  

Folate-depleted HeLa and R5 cells were plated in complete folate-free RPMI 1640 

medium, supplemented with 25 nM 5-CHO-THF, and allowed to adhere overnight. Cells were 

washed with DPBS and incubated in the same media, supplemented with 25 mM PIPES/25 mM 

HEPES (pH 6.8), 0.06 mM adenosine and 1 µM [3H]compound 16 or [3H]compound 17. After 

16 h, cells were washed three times with ice-cold DPBS and scraped mechanically into 5 mL of 

ice-cold DPBS, pelleted (1500 rpm) and flash frozen. Polyglutamyl and unmetabolized drug 

forms were extracted and drug levels quantified by HPLC exactly as previously described in 

Chapter 4 and by Kugel Desmoulin et al. (2011). Cellular proteins were precipitated with ice-

cold TCA. The TCA precipitates were solubilized in 0.5 N NaOH before quantifying with Folin-

phenol reagent (Lowry et al., 1951).   

5.2.10 In vivo Efficacy Study of Compounds 16 and 17 in HeLa and R5 Xenografts.  

Cultured WT and R5 HeLa tumor cells were implanted subcutaneously (~ 107 cells/flank) to 

establish a solid tumor xenograft model in female ICR SCID mice (National Institutes of Health 
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DCT/DTP Animal Production Program, Frederick, MD). The mice were supplied food and water 

ad libitum. Study mice were maintained on a folate-deficient diet (Harlan-Teklad; Product ID: 

TD.00434) starting 18 days before subcutaneous tumor implant to ensure serum folate levels 

would approximate those of humans prior to the start of therapy (Kugel Desmoulin et al., 2011; 

Wang et al., 2010; Wang et al., 2011). This design is analogous to those previously published by 

others (Alati et al., 1996; Gibbs et al., 2005). Individual mouse body weights for each experiment 

were within 2 g, and all mice were 19 g (WT) or 19.5 g (R5) HeLa at the start of therapy.  

For the efficacy trial, the experimental animals were pooled and implanted bilaterally 

subcutaneously with 30-60 mg tumor fragments using a 12-gauge trocar as described in Chapter 

4 for the HepG2 in vivo tumor model (Figure 4.7) and chemotherapy began on day 3 post tumor 

implantation, when the number of cells was relatively small (between 107-108 cells; below the 

established limit of palpation). An organic solvent (ethanol, 5% v/v), carrier (Tween-80, 1% v/v) 

and sodium bicarbonate (0.5% v/v) was used to effect water solubilization of compounds 16 and 

17.  Injection volumes were 0.2 mL IV, pH adjusted to 7.0. Tumors were measured with a caliper 

two to three times weekly. Mice were sacrificed when the cumulative tumor burden reached 

1500 mg. Tumor weights were estimated as described previously (Chapter 4). Experimental 

parameters as qualitative and quantitative end points to assess antitumor activities include T/C 

and T-C (tumor growth delay) [where T is the median time in days required for the treatment 

group tumors to reach a predetermined size (e.g., 500 mg) and C is the median time in days for 

the control group tumors to reach the same size; tumor-free survivors are excluded from these 

calculations], and tumor cell kill [log10 cell kill total (gross) = (T - C)/(3.32)(Td), where (T – C) 

is the tumor growth delay, as described above, and Td is the tumor volume doubling time in 

days, estimated from the best fit straight line from a log-linear growth plot of control group 
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tumors in exponential growth (100-800 mg range)]. For comparison of antitumor activity with 

standard agents and comparisons of activity between tumors, the log10 kill values were converted 

to an arbitrary activity rating (Corbett et al., 1998; Corbett et al., 1997; Polin et al., 2011; Polin et 

al., 1997). For duration of treatment between 5 - 20 days: >2.8 log10 kill (Highly active ++++); 

2.0-2.8 (+++); 1.3-1.9 (++); 0.7-1.2 (+); <0.7 (Inactive; –). Both tumor studies (WT and R5 

HeLa cells) used 4 mice per group. The day of tumor implant was day 0. With the exception of 

the xenograft model, these methods are essentially identical to those described previously in 

Chapter 4 (Kugel Desmoulin et al., 2011; Wang et al., 2010). 

5.3 Results. 

5.3.1 PCFT Transport of [3H]Compound 16 in R1-11-PCFT4 HeLa Cells.  

The expression of high levels of PCFT in diverse human tumor cell lines (Chapter 2) 

gives credence to the notion that folate-based cytotoxins with specificity for PCFT over RFC 

membrane transport could be used for chemotherapy of human solid tumors. We found that the 

novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates 16 and 17 (Figure 3.1) were 

potent (nM) inhibitors of cell proliferation in cells engineered to express PCFT in the absence of 

RFC or FRs (Kugel Desmoulin et al., 2011; Wang et al., 2010; Wang et al., 2011) (Table 3.1), 

suggesting that 16 and 17 are substrates for PCFT-mediated cellular uptake (Chapter 3). This 

was extended to human HepG2 human hepatoma cells endogenously expressing PCFT without 

FRs (Chapter 4) (Kugel Desmoulin et al., 2011). In engineered cell lines, compounds 16 and 17 

appeared to be poorly transported by RFC (Chapter 3 and 4) (Kugel Desmoulin et al., 2011; 

Wang et al., 2010; Wang et al., 2011). Both analogs induced current at -90 mV and pH 5.5 in 

Xenopus oocytes microinjected with PCFT cRNAs, and both were competitive inhibitors of 

[3H]MTX transport in PCFT transfectants from pH 5.5 to pH 6.8 (Chapter 3) (Kugel Desmoulin 
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et al., 2011; Wang et al., 2011). Transport of [3H]compound 17 by PCFT was directly 

demonstrated in R1-11-PCFT4 HeLa cells (Chapter 4) (Kugel Desmoulin et al., 2011).  

By analogy, to confirm PCFT transport of compound 16, R1-11-PCFT4 cells were 

incubated with [3H]compound 16 (0.5 µM, 5 min, 37 ˚C) at pH 5.5 and pH 6.8 in the presence 

and absence of unlabeled compound 17 (10 µM) as a competitive inhibitor. Transport was 

detected at a ~4-fold higher level at pH 5.5 than at pH 6.8, and at either pH uptake was 

substantially abolished in the presence of unlabeled compound 17 (Figure 5.1).  These results 

establish that compound 16, like its 4-carbon analog, compound 17, is a bona fide substrate for 

membrane transport by PCFT.  

5.3.2 Transport and Membrane Expression of  PCFT and RFC in WT and R5 HeLa  

Sublines.  

While compounds 16 and 17 are not RFC transport substrates, levels of RFC could 

nonetheless markedly impact the anti-proliferative effects of these agents, via expansion or 

contraction of intracellular THF cofactor pools. This could be further impacted by varying 

concentrations of extracellular THF cofactors. Thus, RFC levels or ratios of PCFT to RFC 

transport might effectively predict anti-tumor potencies of these prototypical PCFT-targeted 

antifolates (Figure 2.2, Panel E and Figure 2.5, Panel C).  

To explore this concept, we used WT and R5 HeLa cells which express comparable 

levels of PCFT with or without RFC at the protein (Figure 5.2, Panel A) and transcript levels 

Figure 5.2, Panel B). R5 cells are resistant to MTX (Figure 5.4, Panel A) because of a genomic 

deletion that results in loss of RFC (Zhao et al., 2004a). MTX resistance is completely reversible 
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Figure 5.1 PCFT transport activity of compound 16 in R1-11-PCFT4 HeLa cells. Uptake of 
[3H]compound 16 (0.5 µM) was measured at 37˚C for 5 min at pH 5.5 (MES-buffered saline) 
and 6.8 (HEPES-buffered saline) in the presence or absence of unlabeled compound 17 (10µM). 
Internalized [3H]compound 16 was normalized to total protein. Details are provided in Materials 
and Methods. Results are shown for mean values + SEMs for 3 independent experiments. 
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Figure 5.2 Characterization of WT and R5 HeLa sublines.  Panel A, Western blots of sucrose 
gradient purified membrane fractions (25 µg) using human polyclonal PCFT and RFC and 
monoclonal HA antibodies to detect WT and HA-tagged proteins (R5-RFCHA). Panel B, RT-
PCR was used to measure RFC transcript levels in WT and R5 HeLa sublines, RNA was isolated 
using TRIzol reagent, cDNA was synthesized using random hexamers and RT-PCR was 
performed using SYBR green and gene-specific primers (primer sequences are reported in Table 
2.1) and transcript levels were normalized to GAPDH. Panel C, the uptake of [3H]MTX was 
measured at 37˚C for 2 min in WT and R5 HeLa monolayers at pH 7.2 (Anion-free buffer). 
Uptake of 0.5 µM [3H]MTX, [ 3H]PMX, [3H]compound 17 and [3H]compound 16 was measured 
at 37˚C for 2 min in WT and R5 HeLa cell monolayers at pH 5.5 in MES-buffered saline  (Panel 
D) and pH 7.2 (Anion-free buffer) (Panel E). Internalized [3H]drug was normalized to total 
protein. The data in panels D and E represent mean values + SEMs for 3 independent 
experiments. While there were slight differences in initial rates of uptake for compounds 16 and 
17 in panel D, these were not statistically significant (p>0.1). 
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upon transfection with WT RFC (R5-RFC2 cells), which restores RFC transport (Figure 5.2, 

Panel C); confirming that loss of RFC transport is causal to the resistant phenotype.  

While [3H]MTX (0.5 µM) transport at pH 5.5 was nearly identical for WT and R5 HeLa 

cells at pH 5.5 (Figure 5.2, Panel D), MTX uptake in R5 cells in Anion-free buffer at pH 7.2 was 

decreased ~3-fold compared to WT cells (Figure 5.2, Panel E), consistent with the loss of RFC. 

pH 5.5 (PCFT) to pH 7.2 (RFC) MTX transport ratios for R5 and HeLa cells were ~11- and ~3-

fold, respectively (Figure 2.5, Panel C). Transport was also measured for [3H]compounds 16 and 

17 (both at 0.5 µM; 2 min, 37o C) and for [3H]PMX at  pH 5.5 and  pH 7.2. Results were 

compared to those for [3H]MTX.  For all compounds and both cell lines, transport by PCFT over 

RFC clearly predominated, as uptake showed a characteristic pH dependence for PCFT with the 

highest levels at pH 5.5. While there were differences in cellular uptake of the various analogs at 

pH 5.5 with 16 > 17 > PMX~MTX, there were no obvious differences in net membrane transport 

of the individual analogs between WT HeLa and R5 cell lines (Figure 5.2, Panels D and E).  

5.3.3 Impact of RFC and Extracellular Folate on Antitumor Activitie s of Compounds 16 

and 17.  

5-CHO-THF is poorly transported by PCFT at neutral pH and is less effective in 

supporting proliferation of PCFT-expressing cells (without RFC) than RFC-expressing cells 

(without PCFT) (Zhao et al., 2008). Thus, the loss of RFC in R5 cells would be predicted to 

impact THF cofactor requirements for cell proliferation and to contract intracellular pools of 

reduced folates derived from 5-CHO-THF, compared to those in WT HeLa cells (Chattopadhyay 

et al., 2006; Zhao et al., 2004b). This response may be exacerbated in the presence of high 

affinity PCFT-selective substrates which could further restrict the modest levels of THF cofactor 

uptake via PCFT through direct competition.  
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To examine these possibilities, folate-depleted WT, R5 and R5-RFC2 cells were cultured 

in 25, 100, or 1000 nM [3H]5-CHO-THF [corresponding to 12.5, 50, or 500 nM of the active 

(6S) stereoisomer] for 96 h in order to determine cellular accumulation of [3H]THF metabolites. 

During sustained culture, the media pH decreases to ~6.8 (Kugel Desmoulin et al., 2010b) and 

was accompanied by a dose-dependent accumulations of [3H]5-CHO-THF (Figure 5.3, Panel A). 

At 25 nM extracellular [3H]5-CHO-THF, R5 HeLa cells experienced a 31.6% decreased net 

accumulation of [3H]5-CHO-THF compared to WT cells (p<0.05), and a 49.6% decrease 

compared to R5-RFC2 cells (p<0.005). 

We measured proliferation for WT HeLa and R5 cells grown in 25 nM 5-CHO-THF in 

the presence of antifolates (over a range of concentrations up to 1000 nM), including PCFT-

selective compounds 16 and 17, for comparison with MTX, LMX, RTX and PMX, classic 

antifolates which are transported by both RFC and PCFT (Goldman et al., 2010; Kugel 

Desmoulin et al., 2011; Kugel Desmoulin et al., 2010b), and with PT523, which is transported by 

RFC but not PCFT (Kugel Desmoulin et al., 2011; Kugel Desmoulin et al., 2010b; Zhao and 

Goldman, 2007). Cytotoxicity and transport inhibition experiments have demonstrated that 

MTX, PDX, RTX, and LMX can be transported by PCFT, albeit to a lower extent than RFC. 

Similar to published results (Zhao et al., 2004c), R5 (and R5 mock-transfectant) cells were 

substantially resistant to PT523 compared to WT (>213-fold) and R5-RFC2 (>303-fold) cells 

(Figure 5.4, Panel A and Table 5.1). Further, compared to WT HeLa cells, R5 cells were 1.4-, 

4.6-, 6.5-, 13.28- and >213-fold resistant to PMX, MTX, LMX, RTX and PT523, respectively. 

Thus, the greater the affinity of the antifolate for RFC, the more its cytotoxicity is reduced by 

RFC loss, especially if the drug has a lower selectivity for PCFT over RFC. For PMX, WT and 

R5 cells showed similar sensitivities (IC50s of 48.3 and 66.1 nM, respectively). Notably, RFC- 
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Figure 5.3 [3H]5-CHO-THF accumulation in WT and R5 HeLa sublines. Folate depleted R5 
HeLa sublines were treated with increasing concentrations of [3H]5-CHO-THF (0-1000nM) for 
96 h in the absence (Panel A) or presence (0-1000nM) of unlabeled compound 17 (Panel B) or 
compound 16 (Panel C). Internalized [3H]5-CHO-THF was normalized to total protein. The data 
in panel A summarize the results as mean values + SEMs for 3 independent experiments. For 
each 5-CHO-THF concentration, statistically significant differences were calculated between 
WT HeLa or R5-RFC2 cells and R5 cells and are noted with * (p<0.05) and ** (p<0.005).  For 
panels B and C, both R5 and HeLa cells showed decreased total folate metabolites derived from 
[3H]5-CHO-THF, accompanying treatment with increased concentrations of compounds 17 or 16 
(results as mean values + SEMs for 3-5 independent experiments). This difference was 
somewhat greater for R5 cells over WT HeLa cells (52.9% versus 72.9% and 52.7% versus 
71.1%, respectively). Statistical analyses were performed and for compound 16, the difference 
between the two sublines was statistically significant (p=0.006), although statistical significance 
was not quite reached for compound 17 (p=0.078). 
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Figure 5.4 Growth inhibition by antifolate drugs toward WT and R5 HeLa sublines. (Panel 
A) Growth inhibitions were measured by a fluorescence (CellTiter-Blue™)-based assay after 96 
h of exposure of folate-depleted WT and R5 HeLa sublines to a range of inhibitor concentrations. 
Results are presented as 50% inhibitory concentrations (IC50s) as mean IC50 values ± SEMs from 
5-12 independent experiments. IC50 values are summarized in Table 5.1. Statistically significant 
differences between results for WT HeLa or R5-RFC2 cells and those for R5 cells are noted with 
a * (p<0.01). For compound 17 (Panel B) and compound 16 (Panel C), growth inhibition 
experiments were performed in the presence of increasing concentrations (25-1000 nM) of 
extracellular 5-CHO-THF. Results are summarized as mean IC50 values ± SEMs from 3-11 
independent experiments. Statistically significant differences between results for WT HeLa and 
those for R5 cells are noted with a * (p<0.005). 
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deficient R5 cells were more sensitive to the PCFT-specific antifolates 16 and 17 than were WT 

HeLa cells (3.6- and 3.2-fold, respectively) and the R5-RFC2 transfected cells (3.6- and 8.3-fold, 

respectively). While differences in growth inhibitions between R5 and WT HeLa cells for 16 and 

17 were preserved at 100 nM 5-CHO-THF (4.3- and 15-fold, respectively), the effects of both 

drugs were abolished when the concentration of 5-CHO-THF was increased to 1000 nM (Figure 

5.4, Panels B and C). 

   Since compounds 16 and 17 are high affinity substrates for PCFT (Kugel Desmoulin et 

al., 2011; Wang et al., 2010; Wang et al., 2011), we hypothesized that these drugs compete with 

[3H]5-CHO-THF for PCFT-mediated uptake, leading to a more severe contraction of the cellular 

folate pool in R5 cells compared to WT cells than in their absence. Indeed, both compounds 16 

and 17 affected a striking dose-dependent decrease in net accumulation of [3H]5-CHO-THF 

which were greater in RFC-null R5 cells than in WT HeLa cells. At 1000 nM compound 17, 

levels of [3H]5-CHO-THF accumulation in R5 and WT HeLa cells were 52.9% and 72.9%, 

respectively, of levels without drug; for compound 16, the corresponding values were 52.7% and 

71.1%, respectively (Figure 5.3, Panels B and C).  

  Collectively, these results establish that loss of RFC contributes to a contraction of 

cellular folate pools, which is exacerbated in the presence of the PCFT-selective analogs 

compounds 16 and 17.  Importantly, decreased intracellular folates were accompanied by 

markedly increased antiproliferative effects of compounds 16 and 17.  

5.3.4 Polyglutamylation of Compounds 16 and 17 in WT and R5 HeLa Cells.  

Analogous to physiologic folates and other classic antifolate drugs such as MTX 

(Goldman and Matherly, 1985; Shane, 1989), compound 17 is metabolized to polyglutamates 

(Chapter 4 and Kugel Desmoulin et al. (2011)), catalyzed by FPGS. Polyglutamylation of 
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compound 16 has not been previously assessed. For classic antifolates, polyglutamylation is 

critical to drug activity since polyglutamates are retained in cells and typically inhibit folate-

dependent enzyme targets more than their non-polyglutamyl forms (Stokstad, 1990). As 

polyglutamylation of antifolate drugs by FPGS can be regulated by elevated extra- and 

intracellular folates (Shane, 1989), it seemed possible that the impact of RFC and cellular THF 

cofactors on the anti-proliferative effects of compounds 16 and 17 (Figure 5.4, Panel A and 

Table 5.1) may be partly explained in this manner.  

To assess this possibility, HeLa and R5 cells were incubated with 1 µM [3H]compound 

16 or [3H]compound 17 for 16 h at pH 6.8 in the presence of 25 nM 5-CHO-THF and 0.06 mM 

adenosine. Total cellular radiolabeled drug levels were quantitated and tritiated parent drug and 

PGs were extracted and analyzed by reverse-phase HPLC as described in Chapter 4. At least four 

polyglutamyl metabolites (PG2-5) of [3H]compound 17 and five metabolites for [3H]compound 

16 (PG2-6) were resolved by HPLC. Migrations were compared to those for non-polyglutamyl 16 

or 17, and to MTX and MTX polyglutamate standards. Further, samples were treated in parallel 

with conjugase (Kugel Desmoulin et al., 2011), which reverted the majority of the polyglutamyl 

metabolites to the parental drug (data not shown). Results are summarized in Figure 5.5 (Panels 

A and B). HPLC chromatograms for the compound 16 in WT HeLa and R5 cells are shown in 

Figure 5.5  (Panels C and D). For R5 and WT cells, there was a 7-8-fold greater accumulation of 

total and polyglutamyl [3H]compound 16 than [3H]compound 17. WT and R5 cells accumulated 

similar levels of total 16 and 17 drug forms, although there were slight differences in relative 

accumulations of individual PGs between the cell lines. This difference was most obvious for the 

longest chain-length PGs (PG5 and PG6) and appears to be somewhat greater for 17 than 16. 
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Figure 5.5 HPLC analysis of polyglutamyl derivatives of compound 17 and 16 in WT and 
R5 HeLa cells at pH 6.8.  Folate depleted WT and R5 HeLa cells were treated with 1 µM 
[3H]compound 17 (Panel A) and 16 (Panel B) at pH 6.8 in the presence of adenosine (0.06 mM) 
and 25 nM 5-CHO-THF for 16 h. Polyglutamate drug forms were extracted and analyzed as 
described in Materials and Methods. Percent monoglutamate and polyglutamate drug forms were 
determined by chromatographic analysis and the total intracellular radiolabel calculated in units 
of pmol/mg protein. Results are presented as average values plus/minus ranges for two 
independent experiments. Panels C and D, show representative HPLC chromatograms for R5 
and HeLa cells treated with compound 16. 
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These results establish that: (i) compounds 16 and 17 are both excellent substrates for 

polyglutamylation under conditions (pH 6.8) that favor their membrane transport by PCFT; (ii) 

net drug accumulation and polyglutamylation of compound 16 far exceeds that for compound 17; 

and (iii) expression of functional RFC exerts only a modest effect on net polyglutamate synthesis 

of compounds 16 and 17.  

5.3.5 In vivo Efficacy Study of Compounds 16 and 17 Against HeLa and R5 Xenografts.  

To extend our in vitro cell proliferation studies in vivo, we performed in vivo antitumor 

efficacy studies with 8 week old female ICR SCID mice implanted with subcutaneous R5 or WT 

HeLa cells.  

Mice were maintained ad libitum on a folate-deficient diet which decreases serum folates 

to levels approximating those seen in humans (Kugel Desmoulin et al., 2011; Wang et al., 2010; 

Wang et al., 2011). For the drug trial, control and drug treatment groups were non-selectively 

randomized (four mice/group); compounds 17 or 16 were administered intravenously (180 and 

32 mg/kg per injection, respectively) on days 3, 7, 14 and 18 post-implantation.  Mice were 

weighed daily and tumors were measured 2-3 times per week. As reported for other tumor 

models (Kugel Desmoulin et al., 2011; Wang et al., 2011), compounds 17 and 16 showed 

substantial efficacy toward R5 and WT HeLa xenografts (Table 5.2). Both compound 17 and 

compound 16 showed greater efficacy toward R5 cells (0% T/C, (T-C (tumor growth delay) = 23 

days, 3.3 gross log kill, ++++ activity for compound 17; 3% T/C, T-C = 17.5 days, 2.5 gross log 

kill, +++ activity for compound 16) than toward WT HeLa cells (6% T/C, T-C = 13 days, 1.9 

gross log kill, ++ activity for compound 17; 7% T/C, T-C=13 days, 1.9 gross log kill, ++ activity 

for compound 16). The treatment regimens with compounds 16 and 17 were well tolerated with 
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 dose-limiting symptoms manifesting as reversible body weight loss (nadirs sustained for body 

weight loss.   

The results of the in vivo efficacy trial provide proof-of-principal confirmation of our in 

vitro findings that the antitumor effects of both compounds 16 and 17 are greater in RFC-

deficient R5 cells than in WT HeLa cells. Interestingly, the impact of loss of RFC is greater with 

compound 17 than compound 16 in vivo.   

5.4 Discussion. 

In this chapter, we significantly expanded upon previous reports (Kugel Desmoulin et al., 

2011; Kugel Desmoulin et al., 2010b; Wang et al., 2010; Wang et al., 2011; Zhao and Goldman, 

2007) that PCFT may be therapeutically exploitable for treating solid tumors, reflecting unique 

patterns of PCFT expression and transport activity at pHs approximating the tumor 

microenvironment (Chapters 2-4). 

We demonstrated that functional loss of RFC in R5 cells caused a contraction of total cellular 

THF cofactor pools derived from 5-CHO-THF which enhanced the antitumor activities of both 

compounds 16 and 17 compared to WT cells. Importantly, reduction of total cellular folate pools 

in R5 cells was exacerbated in the presence of compounds 16 and 17,  through direct competition 

at PCFT, which further restricted cellular uptake of exogenous 5-CHO-THF.   Efficacies of 

compounds 16 and 17 were also increased toward R5 tumors compared to WT tumors 

transplanted into SCID mice with serum folate concentrations approximating those achieved in 

humans.   

There is ample precedent for an impact of extra- and intracellular folate pools on antifolate 

drug efficacy. Indeed, this is the premise of leucovorin rescue from MTX toxicity (Matherly et 

al., 1987a) or of low-dose folic acid protection from LMX in vivo toxicity (Roberts et al., 2000a), 
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whereby elevated extra- and intracellular folates compete at multiple levels to reverse drug 

activity (Zhao et al., 2001a). In vitro studies in assorted cell line models have extended these 

findings to both classic (PMX, LMX) and non-classic (trimetrexate) antifolates, which inhibit a 

range of cellular targets (DHFR, TS, and GARFTase) (Goldman et al., 2010; Tse and Moran, 

1998; Zhao et al., 2001a). Further, effects on antifolate drug activities are enhanced by decreased 

intracellular folates resulting from a RFC genomic deletion (Chattopadhyay et al., 2006; Zhao et 

al., 2004b; Zhao et al., 2004c) or RFC mutations (Zhao et al., 2000a). Similarly antifolate 

activities are reduced by increased intracellular folates resulting from impaired efflux of folic 

acid by MRP1 (Assaraf and Goldman, 1997) or enhanced folic acid influx by a mutant RFC (Tse 

et al., 1998; Tse and Moran, 1998).  

Regardless of the underlying mechanism and intracellular drug target involved, markedly 

decreased total intracellular THF pools can result in collateral sensitivities to antifolates, often in 

the face of substantially decreased levels of drug uptake (Chattopadhyay et al., 2006; Zhao et al., 

2000b; Zhao et al., 2004c). This could reflect inhibitory effects on antifolate polyglutamylation 

(with consequent impact on drug retention and inhibition of folate-dependent enzyme targets) 

due to competitive feedback inhibition at FPGS by high levels of THF cofactor PGs (Shane, 

1989). Additionally, FPGS activity has been found to increase in response to decreased extra- 

and intracellular folates (Gates et al., 1996). There can also be direct competitive interactions 

between polyglutamyl folates and antifolates that interfere with drug binding and inhibition at 

their enzyme targets, as documented for MTX and other classic antifolates (Matherly et al., 

1983). Changes in drug efflux are also possible, as ABC transporter (ABCG2, ABCC1) levels 

and/or intracellular distributions have been described in response to folate deprivation (Ifergan et 

al., 2005).   
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In the present study, we found that transport of compounds 16 and 17 by PCFT was virtually 

identical between the RFC-deficient R5 and WT HeLa cell lines. By analogy with other classical 

antifolates (Mendelsohn et al., 1999; Shih and Thornton, 1999), the increased accumulation of 

long chain polyglutamyl forms of compounds 16 and 17  observed in the R5 subline might be 

expected to result in increased inhibition of intracellular GARFTase and de novo purine 

nucleotide biosynthesis (Kugel Desmoulin et al., 2011; Wang et al., 2010; Wang et al., 2011). 

However, even though total and polyglutamyl accumulations of compounds 16 and 17 during 

sustained drug exposures were similar between WT and R5 cells; there were slight differences in 

distributions of compounds 16 and 17 polyglutamates between the lines. This difference was 

greatest for the longest chain length PGs (PG5 and PG6) and appeared to be somewhat greater for 

compound 17 than 16.  

The results provide proof-of-principal evidence that RFC levels and function are critical 

determinants of in vitro antitumor activities and in vivo efficacies of PCFT-targeted antifolates 

that are not themselves substrates for RFC. It is this lack of RFC transport which should confer 

tumor selectivity and decreased toxicity to normal tissues for this novel class of agents. Tumor 

selectivity would be enhanced by substantial levels of PCFT protein in solid tumors and by 

acidic pHs characterizing the tumor microenvironment which favor PCFT over RFC transport 

(Kugel Desmoulin et al., 2011). Conversely, at neutral pHs characterizing most normal tissues, 

RFC transport of reduced folates would be increased, resulting in elevated levels of THF 

cofactors within cells which further protect from untoward drug effects. Of course, in tumors 

with sufficiently high RFC levels, uptake of THF cofactors by this process may still occur even 

at somewhat acidic pHs. Accordingly, any decrease in RFC function would serve to augment the 

inherent antitumor selectivity and increase sensitivities to PCFT-selective antifolates.  
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CONCLUSIONS 

 
The goal of this dissertation research was to determine the therapeutic potential of using 

PCFT-mediated membrane transport to selectively deliver novel cytotoxic antifolates into tumor 

cells. To establish the feasibility of this approach the expression and function of PCFT in normal 

and tumor tissues was determined and compared to RFC levels (Chapter 2). Additionally, novel 

antifolates with selective uptake by PCFT were identified and characterized in vitro and in vivo 

to evaluate their preclinical antitumor efficacies (Chapters 3 and 4). Finally, the influence of 

RFC-mediated folate uptake on drug efficacy was determined for these novel PCFT-selective 

antifolates (Chapter 5).   

The comprehensive analysis of PCFT expression and function in human normal and 

tumor tissue established for the first time that PCFT is present in tumor tissue and is functional at 

the acidic pH surrounding most solid tumors. There were significant levels of PCFT transcripts 

in the majority of human solid tumor tissues and cell lines of different origins (e.g., breast, 

prostate, ovarian, etc.), and uniformly low PCFT transcript levels in human leukemias, including 

both ALL and AML. PCFT levels were highest in Caco-2 (colorectal) SKOV3 (ovarian), HepG2 

(hepatoma), HeLa (cervical), and T47D (breast) cancer cells. In human normal tissues, PCFT 

expression was detected in the small intestine, kidney, liver, and the adrenal gland. When 

compared to the ubiquitously expressed RFC, the presence of PCFT was more limited. This 

suggests, based on PCFT expression patterns, antifolates preferentially using PCFT and not RFC 

as a means of drug entry into tumor cells may be less toxic compared to antifolates presently 

used in cancer therapy. 

The rational drug design and screening of novel 6-substituted pyrrolo[2,3-d]pyrimidine 

benzoyl (compound 3) or thienoyl (compounds 16 and 17) analogs identified the first antifolates 
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that are selective for PCFT-mediated uptake and have no appreciable transport by RFC. The 

novel antifolates were identified and characterized in multiple engineered cell lines that express 

PCFT alone (R2/PCFT4 CHO and R1-11-PCFT4 HeLa sublines), or RFC alone (PC43-10 CHO 

and R1-11-RFC6 HeLa sublines), to determine selectivity, as well as solid tumor cell lines such 

as HeLa and HepG2 that express both PCFT and RFC to determine therapeutic potential. The 

PCFT-mediated uptake of the novel antifolates was very efficient and led to growth inhibition in 

all cells tested expressing PCFT.   

When further characterized these analogs were found to be directly transported by PCFT 

in a pH- and time-dependent manner, where uptake was enhanced at acidic pHs that are relevant 

to the solid tumor microenvironment. Once internalized the novel antifolate compounds were 

polyglutamylated and up to five or six polyglutamyl metabolites were identified. The principle 

intracellular folate-dependent enzyme target for compounds 3, 16 and 17 was GARFTase, a key 

de novo purine nucleotide biosynthesis enzyme. This was determined by both nucleoside 

protection and an in situ GARFTase assay. Inhibition of GARFTase led to a dose- and time-

dependent decrease in ATP and GTP levels, which caused an S-phase accumulation and 

irreversible cell death as measured by discontinuous colony formation. The mechanism of cell 

death was partially through apoptosis and partially through an unidentified process that remains 

to be elucidated. 

RFC function had a large impact on the cytotoxicity of analogs selective for PCFT-

mediated uptake. While the novel compounds are not RFC transport substrates, levels of RFC 

nonetheless markedly impacted the anti-proliferative effects of these agents, via expansion or 

contraction of intracellular THF cofactor pools. Loss of RFC, which occurs in clinical cases of 

de novo and acquired resistance to the classic antifolates, leads to enhanced sensitivity to 
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antifolates selective for PCFT-mediated uptake. This was due to contraction of reduced folate 

pools and enhanced polyglutamylation of the novel drugs presumably leading to better 

GARFTase inhibition.     

The in vitro cytotoxicity of compounds 16 and 17 has been recapitulated in vivo in 

subcutaneous HepG2 and HeLa xenografts in which PCFT was the predominant mode of drug 

uptake. Treatment with compound 16 led to potent tumor growth delay of HepG2 tumors, 

providing compelling proof-of-principle validation that PCFT is an efficient mechanism of drug 

delivery. Additionally, subcutaneous HeLa tumors that lacked RFC function were exquisitely 

more sensitive to PCFT-targeted drugs compared to wild-type HeLa tumors that expressed 

functional RFC. These data suggests that drugs selective for PCFT may be useful in tumors with 

antifolate resistance due to lack of RFC function. Importantly, RFC levels or ratios of PCFT to 

RFC transport might effectively predict anti-tumor potencies of these novel PCFT-selective 

antifolates. 

The evidence in this dissertation of widespread PCFT expression in human solid tumors 

paired with the discovery of novel antifolates selective for PCFT-mediated uptake offers exciting 

new therapeutic possibilities to selectively deliver novel antifolate drugs to tumors by exploiting 

the acidic tumor microenvironment. Data presented here suggests that PCFT is a surprisingly 

efficient means of delivering antifolates into a tumor cell both in vitro and in vivo and there is a 

strong rationale for developing drugs whose transport by PCFT, but not RFC, allows for 

GARFTase inhibition.  
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Folates are essential cofactors of tumor cell proliferation and survival required for 

nucleotide biosynthesis and amino acid metabolism. In cancer therapy, inhibition of folate-

dependent metabolic pathways has been achieved through the use of antifolates. Unfortunately, 

the efficacy of many clinically approved antifolates is limited by a lack of tumor selectivity. 

Facilitative transport of folates into mammalian cells is achieved by the reduced folate carrier 

(RFC) and proton-coupled folate transporter (PCFT). As PCFT is a folate-proton symporter with 

an acidic pH optimum, PCFT may provide a mechanism for targeting cytotoxic antifolates to 

tumors, based on their acidic microenvironments. To establish the feasibility of this approach, we 

systematically determined the expression profiles for PCFT and RFC. In various human 

malignant cell lines and tissues PCFT was highly expressed and functional, while its expression 

in normal tissue was more limited compared to RFC.  

Screening and characterization of multiple series of novel antifolates led to the 

identification of 6-substituted pyrrolo[2,3-d]pyrimidine benzoyl and thienoyl antifolates, which 

were selective for PCFT-mediated uptake, but not RFC. Upon internalization, these novel 
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antifolates were extensively polyglutamylated, as detected by high performance liquid 

chromatography (HPLC). Growth inhibition assay paired with nucleoside protection identified 

glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) in the de novo purine 

biosynthesis pathway as the principle drug target. This was confirmed by in situ measurement of 

[14C]glycine incorporation into [14C]formylGAR in treated cells. Furthermore, contraction of 

intracellular purine nucleotide triphosphate pools occurred in a dose- and time-dependent 

manner, as demonstrated by quantitative HPLC analysis. Further, drug treatment induced S-

phase accumulation eventually leading to irreversible cell death. Drug treatment caused a 

significant delay in tumor growth in an in vivo efficacy trial of SCID mice implanted with 

subcutaneous human tumors where PCFT was the sole mechanism of drug uptake.    

Although these compounds are not substrates for RFC, its expression does impact drug 

efficacy by influencing intracellular tetrahydrofolate (THF) cofactor pools. Loss of functional 

RFC leads to increased polyglutamylation of these analogs within the cell causing enhanced 

cytotoxicity. Similarly, these novel PCFT-selective antifolates displayed increased in vivo 

efficacy in subcutaneously implanted human tumors lacking RFC.  

Our finding of widespread PCFT expression in human solid tumors paired with our 

discovery of novel antifolates internalized via PCFT offers exciting new therapeutic possibilities 

for selectively targeting tumors based on their acidic microenvironments. These compounds 

display immense therapeutic potential, especially in tumors with de novo or acquired resistance 

to classic antifolates caused by lack of RFC function. 
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